(Logarithmic) densities for automatic sequences along primes and squares

In this paper we develop a method to transfer density results for primitive automatic sequences to logarithmic-density results for general automatic sequences. As an application we show that the logarithmic densities of any automatic sequence along squares $(n^2)_{n\geq 0}$ and primes $(p_n)_{n\geq 1}$ exist and are computable. Furthermore, we give for these subsequences a criterion to decide whether the densities exist, in which case they are also computable. In particular in the prime case these densities are all rational. We also deduce from a recent result of the third author and Lemanczyk that all subshifts generated by automatic sequences are orthogonal to any bounded multiplicative aperiodic function.

[1]  Christian Mauduit,et al.  La somme des chiffres des carrés , 2009 .

[2]  Lauwerens Kuipers,et al.  Uniform distribution of sequences , 1974 .

[3]  Johannes F. Morgenbesser,et al.  Generalized Thue-Morse sequences of squares , 2012 .

[4]  Jakub Byszewski,et al.  Gowers norms for automatic sequences , 2020, ArXiv.

[5]  Randall R. Holmes Linear Representations of Finite Groups , 2008 .

[7]  C. Mauduit,et al.  Rudin–Shapiro sequences along squares , 2017 .

[8]  Sarnak’s Conjecture Implies the Chowla Conjecture Along a Subsequence , 2017, 1710.07049.

[9]  Christian Mauduit,et al.  Sur un problème de Gelfond: la somme des chiffres des nombres premiers , 2010 .

[10]  M. Lema'nczyk,et al.  Automatic sequences are orthogonal to aperiodic multiplicative functions , 2018, 2019-20 MATRIX Annals.

[11]  A. O. Gelfond,et al.  Sur les nombres qui ont des propriétés additives et multiplicatives données , 1968 .

[12]  C. Mauduit,et al.  Normality along squares , 2018, Journal of the European Mathematical Society.

[13]  Maksym Radziwill,et al.  Rigidity in dynamics and Möbius disjointness , 2019, Fundamenta Mathematicae.

[14]  P. Sarnak Three Lectures on the Mobius Function Randomness and Dynamics , 2010 .

[15]  T. Tao Equivalence of the Logarithmically Averaged Chowla and Sarnak Conjectures , 2016, 1605.04628.

[16]  Alan Cobham,et al.  Uniform tag sequences , 1972, Mathematical systems theory.

[17]  Jakub Byszewski,et al.  Substitutive Systems and a Finitary Version of Cobham’s Theorem , 2019, Combinatorica.

[18]  S. Ferenczi,et al.  Sarnak’s Conjecture: What’s New , 2017, 1710.04039.

[19]  H. Iwaniec,et al.  Analytic Number Theory , 2004 .

[20]  Clemens Müllner,et al.  The Rudin–Shapiro Sequence and Similar Sequences Are Normal Along Squares , 2017, Canadian Journal of Mathematics.

[21]  M. Meerschaert Regular Variation in R k , 1988 .

[22]  Michael Drmota,et al.  Subsequences of automatic sequences indexed by ⌊nc⌋ and correlations , 2012 .

[23]  B. Host,et al.  The logarithmic Sarnak conjecture for ergodic weights , 2017, 1708.00677.

[24]  Michael Drmota,et al.  The sum‐of‐digits function of polynomial sequences , 2011, J. Lond. Math. Soc..

[25]  T. Tao,et al.  Odd order cases of the logarithmically averaged Chowla conjecture , 2017, 1710.02112.

[26]  Christian Mauduit,et al.  Prime numbers along Rudin–Shapiro sequences , 2015 .

[27]  Clemens Müllner N T ] 5 J ul 2 01 7 AUTOMATIC SEQUENCES FULFILL THE SARNAK , 2017 .

[28]  T. Tao THE LOGARITHMICALLY AVERAGED CHOWLA AND ELLIOTT CONJECTURES FOR TWO-POINT CORRELATIONS , 2015, Forum of Mathematics, Pi.