Ideal, non-extended formulations for disjunctive constraints admitting a network representation

In this paper we reconsider a known technique for constructing strong MIP formulations for disjunctive constraints of the form $$x \in \bigcup _{i=1}^m P_i$$ , where the $$P_i$$ are polytopes. The formulation is based on the Cayley Embedding of the union of polytopes, namely, $$Q := \mathrm {conv}(\bigcup _{i=1}^m P_i\times \{\epsilon ^i\})$$ , where $$\epsilon ^i$$ is the ith unit vector in $${\mathbb {R}}^m$$ . Our main contribution is a full characterization of the facets of Q, provided it has a certain network representation. In the second half of the paper, we work-out a number of applications from the literature, e.g., special ordered sets of type 2, logical constraints, the cardinality indicating polytope, union of simplicies, etc., along with a more complex recent example. Furthermore, we describe a new formulation for piecewise linear functions defined on a grid triangulation of a rectangular region $$D \subset {\mathbb {R}}^d$$ using a logarithmic number of auxilirary variables in the number of gridpoints in D for any fixed d. The series of applications demonstrates the richness of the class of disjunctive constraints for which our method can be applied.

[1]  Egon Balas,et al.  On unions and dominants of polytopes , 2004, Math. Program..

[2]  András Frank,et al.  Submodular functions in graph theory , 1993, Discret. Math..

[3]  Egon Balas,et al.  On the Dimension of Projected Polyhedra , 1998, Discret. Appl. Math..

[4]  Manfred W. Padberg,et al.  Approximating Separable Nonlinear Functions Via Mixed Zero-One Programs , 1998, Oper. Res. Lett..

[5]  Robert G. Jeroslow On defining sets of vertices of the hypercube by linear inequalities , 1975, Discret. Math..

[6]  George L. Nemhauser,et al.  Mixed-Integer Models for Nonseparable Piecewise-Linear Optimization: Unifying Framework and Extensions , 2010, Oper. Res..

[7]  Laurence A. Wolsey,et al.  Compact formulations as a union of polyhedra , 2005, Math. Program..

[8]  Roel Leus,et al.  Polyhedral Results and Branch-and-Cut for the Resource Loading Problem , 2021, INFORMS J. Comput..

[9]  Gérard Cornuéjols,et al.  Extended formulations in combinatorial optimization , 2013, Ann. Oper. Res..

[10]  Christian Tjandraatmadja,et al.  Strong mixed-integer programming formulations for trained neural networks , 2020, Math. Program..

[11]  Egon Balas On the convex hull of the union of certain polyhedra , 1988 .

[12]  J. A. Tomlin,et al.  Special ordered sets and an application to gas supply operations planning , 1988, Math. Program..

[13]  Hassan L. Hijazi,et al.  Mixed-integer nonlinear programs featuring “on/off” constraints , 2012, Comput. Optim. Appl..

[14]  Juan Pablo Vielma,et al.  Mixed Integer Linear Programming Formulation Techniques , 2015, SIAM Rev..

[15]  Hong Yan,et al.  Tight representation of logical constraints as cardinality rules , 1999, Math. Program..

[16]  Kanstantsin Pashkovich,et al.  Extended Formulations for Combinatorial Polytopes , 2012 .

[17]  E. Balas Disjunctive programming and a hierarchy of relaxations for discrete optimization problems , 1985 .

[18]  D. R. Fulkerson,et al.  Maximal Flow Through a Network , 1956 .

[19]  Robert G. Jeroslow A simplification for some disjunctive formulations , 1988 .

[20]  Ilias Zadik,et al.  Mixed-Integer Convex Representability , 2016, IPCO.

[21]  Amitabh Basu,et al.  Mixed-Integer Linear Representability, Disjunctions, and Variable Elimination , 2016, IPCO.

[22]  Menelaos I. Karavelas,et al.  The maximum number of faces of the minkowski sum of three convex polytopes , 2013, SoCG '13.

[23]  Matthias Köppe,et al.  Intermediate integer programming representations using value disjunctions , 2008, Discret. Optim..

[24]  Juan Pablo Vielma,et al.  Nonconvex piecewise linear functions: Advanced formulations and simple modeling tools , 2017, 1708.00050.

[25]  George L. Nemhauser,et al.  Modeling disjunctive constraints with a logarithmic number of binary variables and constraints , 2011, Math. Program..

[26]  Kwanghun Chung,et al.  Strong valid inequalities for orthogonal disjunctions and bilinear covering sets , 2010, Math. Program..

[27]  Oktay Günlük,et al.  Perspective reformulations of mixed integer nonlinear programs with indicator variables , 2010, Math. Program..

[28]  Jeannette Janssen,et al.  Bounded Stable Sets: Polytopes and Colorings , 1999, SIAM J. Discret. Math..

[29]  Juan Pablo Vielma Small and strong formulations for unions of convex sets from the Cayley embedding , 2017, Mathematical Programming.

[30]  Birkett Huber,et al.  The Cayley Trick, lifting subdivisions and the Bohne-Dress theorem on zonotopal tilings , 2000 .

[31]  Juan Pablo Vielma,et al.  Embedding Formulations and Complexity for Unions of Polyhedra , 2015, Manag. Sci..

[32]  Menelaos I. Karavelas,et al.  The Maximum Number of Faces of the Minkowski Sum of Two Convex Polytopes , 2012, Discret. Comput. Geom..

[33]  Pierre Bonami,et al.  On mathematical programming with indicator constraints , 2015, Math. Program..

[34]  E. Balas DISJUNCTIVE PROGRAMMING: CUTTING PLANES FROM LOGICAL CONDITIONS , 1975 .

[35]  Sebastián Ceria,et al.  Convex programming for disjunctive convex optimization , 1999, Math. Program..

[36]  Gérard Cornuéjols,et al.  Extended formulations in combinatorial optimization , 2010, 4OR.

[37]  Marco Di Summa,et al.  Balas formulation for the union of polytopes is optimal , 2020, Math. Program..

[38]  Egon Balas Logical Constraints as Cardinality Rules: Tight Representation , 2004, J. Comb. Optim..

[39]  Juan Pablo Vielma,et al.  A Combinatorial Approach for Small and Strong Formulations of Disjunctive Constraints , 2019, Math. Oper. Res..

[40]  Egon Balas,et al.  Projection, Lifting and Extended Formulation in Integer and Combinatorial Optimization , 2005, Ann. Oper. Res..

[41]  J. K. Lowe Modelling with Integer Variables. , 1984 .

[42]  Alexander Martin,et al.  Mixed Integer Models for the Stationary Case of Gas Network Optimization , 2006, Math. Program..

[43]  Egon Balas,et al.  programming: Properties of the convex hull of feasible points * , 1998 .

[44]  Jon Lee,et al.  Polyhedral methods for piecewise-linear functions I: the lambda method , 2001, Discret. Appl. Math..

[45]  G. Ziegler Lectures on Polytopes , 1994 .

[46]  Charles E. Blair Representation for multiple right-hand sides , 1991, Math. Program..