The High Energy X-ray Probe (HEX-P): Probing Accretion onto Stellar Mass Black Holes

Accretion is a universal astrophysical process that plays a key role in cosmic history, from the epoch of reionization to galaxy and stellar formation and evolution. Accreting stellar-mass black holes in X-ray binaries are one of the best laboratories to study the accretion process and probe strong gravity -- and most importantly, to measure the angular momentum, or spin, of black holes, and its role as a powering mechanism for relativistic astrophysical phenomena. Comprehensive characterization of the disk-corona system of accreting black holes, and their co-evolution, is fundamental to measurements of black hole spin. Here, we use simulated data to demonstrate how key unanswered questions in the study of accreting stellar-mass black holes will be addressed by the {\it High Energy X-ray Probe} (\hexp). \hexp\ is a probe-class mission concept that will combine high spatial resolution X-ray imaging and broad spectral coverage ($0.2\mbox{--}80$keV) with a sensitivity superior to current facilities (including \xmm\ and \nustar) to enable revolutionary new insights into a variety of important astrophysical problems. We illustrate the capability of \hexp\ to: 1) measure the evolving structures of black hole binary accretion flows down to low ($\lesssim0.1\%$) Eddington-scaled luminosities via detailed X-ray reflection spectroscopy; 2) provide unprecedented spectral observations of the coronal plasma, probing its elusive geometry and energetics; 3) perform detailed broadband studies of stellar mass black holes in nearby galaxies, thus expanding the repertoire of sources we can use to study accretion physics and determine the fundamental nature of black holes; and 4) act as a complementary observatory to a range of future ground and space-based astronomical observatories, thus providing key spectral measurements of the multi-component emission from the inner accretion flows of BH-XRBs.

[1]  L. Sironi,et al.  Comptonization by Reconnection Plasmoids in Black Hole Coronae III: Dependence on the Guide Field in Pair Plasma , 2023, 2310.04233.

[2]  A. Fabian,et al.  Reflection and Timing Study of the Transient Black Hole X-Ray Binary MAXI J1803-298 with NuSTAR , 2023, The Astrophysical Journal.

[3]  D. Walton,et al.  High-density Reflection Spectroscopy of Black Hole X-Ray Binaries in the Hard State , 2023, The Astrophysical Journal.

[4]  C. Bambi,et al.  The Hard-to-soft Transition of GX 339–4 as Seen by Insight–HXMT , 2022, The Astrophysical Journal.

[5]  J. Tomsick,et al.  A Systematic View of Ten New Black Hole Spins , 2022, The Astrophysical Journal.

[6]  P. Gandhi,et al.  High resolution X-ray spectroscopy of V4641 Sgr during its 2020 outburst , 2022, Monthly Notices of the Royal Astronomical Society.

[7]  Javier A. García,et al.  The Long-stable Hard State of XTE J1752-223 and the Disk Truncation Dilemma , 2022, The Astrophysical Journal.

[8]  E. Kara,et al.  Black holes: Timing and spectral properties and evolution , 2022, 2206.14410.

[9]  Javier A. García,et al.  Polarized x-rays constrain the disk-jet geometry in the black hole x-ray binary Cygnus X-1 , 2022, Science.

[10]  L. Sironi,et al.  Comptonization by Reconnection Plasmoids in Black Hole Coronae II: Electron-Ion Plasma , 2022, 2203.02856.

[11]  M. Szanecki,et al.  Insight-HXMT, NuSTAR, and INTEGRAL Data Show Disk Truncation in the Hard State of the Black Hole X-Ray Binary MAXI J1820+070 , 2021, 2112.08116.

[12]  Cheryl D. Alexander,et al.  The Imaging X-Ray Polarimetry Explorer (IXPE): Pre-Launch , 2021, 2112.01269.

[13]  P. K. Panda,et al.  GWTC-3: Compact Binary Coalescences Observed by LIGO and Virgo During the Second Part of the Third Observing Run , 2021, 2111.03606.

[14]  M. Fishbach,et al.  Apples and Oranges: Comparing Black Holes in X-Ray Binaries and Gravitational-wave Sources , 2021, The Astrophysical Journal Letters.

[15]  A. Segreto,et al.  Tracking the evolution of the accretion flow in MAXI J1820+070 during its hard state with the JED-SAD model , 2021, Astronomy & Astrophysics.

[16]  J. Tomsick,et al.  The Spin and Orientation of the Black Hole in XTE J1908+094 , 2021, The Astrophysical Journal.

[17]  A. Beloborodov,et al.  Comptonization by reconnection plasmoids in black hole coronae I: Magnetically dominated pair plasma , 2021, Monthly Notices of the Royal Astronomical Society.

[18]  Norbert Meidinger,et al.  Enhanced simulations on the Athena/Wide Field Imager instrumental background , 2021, Journal of Astronomical Telescopes, Instruments, and Systems.

[19]  J. Poutanen,et al.  Hybrid Comptonization and Electron–Positron Pair Production in the Black-hole X-Ray Binary MAXI J1820+070 , 2021, 2104.04316.

[20]  B. Williams,et al.  The Wolf–Rayet + Black Hole Binary NGC 300 X-1: What is the Mass of the Black Hole? , 2021, 2102.07065.

[21]  J. Rodriguez,et al.  Potential origin of the state-dependent high-energy tail in the black hole microquasar Cygnus X-1 as seen with INTEGRAL , 2021, Astronomy & Astrophysics.

[22]  Norbert Meidinger,et al.  Development status of the wide field imager instrument for Athena , 2020, Astronomical Telescopes + Instrumentation.

[23]  A. Drake,et al.  Multi-wavelength Observations of AT2019wey: a New Candidate Black Hole Low-mass X-ray Binary , 2020, The Astrophysical Journal.

[24]  A. Lien,et al.  A Comprehensive X-Ray Report on AT2019wey , 2020, 2012.00160.

[25]  C. Reynolds Observational Constraints on Black Hole Spin , 2020, Annual Review of Astronomy and Astrophysics.

[26]  Jon M. Miller,et al.  A New Spin on an Old Black Hole: NuSTAR Spectroscopy of EXO 1846–031 , 2020, The Astrophysical Journal.

[27]  R. Sunyaev,et al.  SRG discovery of SRGA J043520.9+552226 = SRGE J043523.3+552234, an X-ray counterpart of optical transient ATLAS19bcxp , 2020 .

[28]  D. Walton,et al.  A dynamic black hole corona in an active galaxy through X-ray reverberation mapping , 2020, Nature Astronomy.

[29]  F. Harrison,et al.  Evolution of the Accretion Disk–Corona during the Bright Hard-to-soft State Transition: A Reflection Spectroscopic Study with GX 339–4 , 2019, The Astrophysical Journal.

[30]  C. Broeck,et al.  Science case for the Einstein telescope , 2019, Journal of Cosmology and Astroparticle Physics.

[31]  D. Walton,et al.  MAXI J1820+070 with NuSTAR I. An increase in variability frequency but a stable reflection spectrum: coronal properties and implications for the inner disc in black hole binaries , 2019, Monthly Notices of the Royal Astronomical Society.

[32]  A. Beloborodov,et al.  Kinetic Simulations of Radiative Magnetic Reconnection in the Coronae of Accreting Black Holes , 2019, The Astrophysical Journal.

[33]  Eric Burns,et al.  The Compton Spectrometer and Imager , 2019, 1908.04334.

[34]  D. Walton,et al.  The 2017 Failed Outburst of GX 339–4: Relativistic X-Ray Reflection near the Black Hole Revealed by NuSTAR and Swift Spectroscopy , 2019, The Astrophysical Journal.

[35]  Philippe Peille,et al.  SIXTE: a generic X-ray instrument simulation toolkit , 2019, Astronomy & Astrophysics.

[36]  Duncan A. Brown,et al.  Cosmic Explorer: The U.S. Contribution to Gravitational-Wave Astronomy beyond LIGO , 2019, 1907.04833.

[37]  Linhao Ma,et al.  Angular momentum transport in massive stars and natal neutron star rotation rates , 2019, Monthly Notices of the Royal Astronomical Society.

[38]  K. Nandra,et al.  The Athena space X‐ray observatory and the astrophysics of hot plasma † , 2019, Astronomische Nachrichten.

[39]  H. M. Antia,et al.  Broad-band reflection spectroscopy of MAXI J1535–571 using AstroSat: estimation of black hole mass and spin , 2019, Monthly Notices of the Royal Astronomical Society.

[40]  Alessio Trois,et al.  The X-ray Polarization Probe mission concept , 2019, 1907.10190.

[41]  S. Eikenberry,et al.  The corona contracts in a black-hole transient , 2019, Nature.

[42]  Umaa Rebbapragada,et al.  The Zwicky Transient Facility: System Overview, Performance, and First Results , 2018, Publications of the Astronomical Society of the Pacific.

[43]  J. Roques,et al.  On the High-energy Emissions of Compact Objects Observed with INTEGRAL SPI: Event Selection Impact on Source Spectra and Scientific Results for the Bright Sources Crab Nebula, GS 2023+338 and MAXI J1820+070 , 2018, The Astrophysical Journal.

[44]  V. Kalogera,et al.  On the Origin of Black Hole Spin in High-mass X-Ray Binaries , 2018, The Astrophysical Journal.

[45]  Matteo Guainazzi,et al.  Concept of the X-ray Astronomy Recovery Mission , 2018, Astronomical Telescopes + Instrumentation.

[46]  T. Dauser,et al.  Reflection Spectroscopy of the Black Hole Binary XTE J1752−223 in Its Long-stable Hard State , 2018, The Astrophysical Journal.

[47]  P. Quinet,et al.  The Problem of the High Iron Abundance in Accretion Disks around Black Holes , 2018, 1805.00581.

[48]  B. Stalder,et al.  ATLAS: A High-cadence All-sky Survey System , 2018, 1802.00879.

[49]  W. Brandt,et al.  Revealing structure and evolution within the corona of the Seyfert galaxy I Zw 1 , 2017, 1707.05782.

[50]  A. Zdziarski,et al.  Analysis of NuSTAR and Suzaku observations of Cyg X-1 in the hard state: evidence for a truncated disc geometry , 2017, 1705.06638.

[51]  A. Beloborodov Radiative Magnetic Reconnection Near Accreting Black Holes , 2017, 1701.02847.

[52]  Javier A. García,et al.  STRONGER REFLECTION FROM BLACK HOLE ACCRETION DISKS IN SOFT X-RAY STATES , 2016, 1609.04592.

[53]  T. Maccarone,et al.  Wind, jet, hybrid corona and hard X-ray flares: Multiwavelength evolution of GRO J1655−40 during the 2005 outburst rise , 2016, 1609.00458.

[54]  Martin C. Weisskopf,et al.  The Imaging X-ray Polarimetry Explorer (IXPE) , 2016, Astronomical Telescopes + Instrumentation.

[55]  M. Feroci,et al.  eXTP: Enhanced X-ray Timing and Polarization mission , 2016, Astronomical Telescopes + Instrumentation.

[56]  B. A. Boom,et al.  Binary Black Hole Mergers in the First Advanced LIGO Observing Run , 2016, 1606.04856.

[57]  Armin Rest,et al.  ATLAS Transient Discovery Report for 2019-02-07 , 2016 .

[58]  Mark D. Egan,et al.  The Neutron star Interior Composition Explorer (NICER): design and development , 2016, Astronomical Telescopes + Instrumentation.

[59]  A. Castro-Tirado,et al.  Spectral and timing evolution of the bright failed outburst of the transient black hole Swift J174510.8−262411 , 2015, 1512.02805.

[60]  A. Zdziarski,et al.  Spectral analysis of the XMM–Newton data of GX 339–4 in the low/hard state: disc truncation and reflection , 2015, 1512.01833.

[61]  J. Gladstone,et al.  WATCHDOG: A COMPREHENSIVE ALL-SKY DATABASE OF GALACTIC BLACK HOLE X-RAY BINARIES , 2015, 1512.00778.

[62]  L. Natalucci,et al.  FIRST INTEGRAL OBSERVATIONS OF V404 CYGNI DURING THE 2015 OUTBURST: SPECTRAL BEHAVIOR IN THE 20–650 KeV ENERGY RANGE , 2015, 1510.03677.

[63]  S. Barros,et al.  Accretion-induced variability links young stellar objects, white dwarfs, and black holes , 2015, Science Advances.

[64]  Jon M. Miller,et al.  HIGH-RESOLUTION CHANDRA HETG SPECTROSCOPY OF V404 CYGNI IN OUTBURST , 2015, 1508.01181.

[65]  D. Walton,et al.  THE COMPLEX ACCRETION GEOMETRY OF GX 339–4 AS SEEN BY NuSTAR AND SWIFT , 2015, 1506.01381.

[66]  D. Walton,et al.  NuSTAR AND SUZAKU OBSERVATIONS OF THE HARD STATE IN CYGNUS X-1: LOCATING THE INNER ACCRETION DISK , 2015, 1506.00007.

[67]  A. Fabian,et al.  Properties of AGN coronae in the NuSTAR era – II. Hybrid plasma , 2015, 1505.07603.

[68]  A. Fabian,et al.  Properties of AGN coronae in the NuSTAR era , 2015 .

[69]  Javier A. García,et al.  X-RAY REFLECTION SPECTROSCOPY OF THE BLACK HOLE GX 339–4: EXPLORING THE HARD STATE WITH UNPRECEDENTED SENSITIVITY , 2015, 1505.03607.

[70]  Javier A. García,et al.  ON ESTIMATING THE HIGH-ENERGY CUTOFF IN THE X-RAY SPECTRA OF BLACK HOLES VIA REFLECTION SPECTROSCOPY , 2015, 1505.03616.

[71]  Berkeley,et al.  NEW CONSTRAINTS ON THE BLACK HOLE LOW/HARD STATE INNER ACCRETION FLOW WITH NuSTAR , 2014, 1411.1921.

[72]  J. Tomsick,et al.  COMPLETE MULTIWAVELENGTH EVOLUTION OF GALACTIC BLACK HOLE TRANSIENTS DURING OUTBURST DECAY. II. COMPACT JETS AND X-RAY VARIABILITY PROPERTIES , 2014, 1409.3239.

[73]  A. Fabian,et al.  The role of the reflection fraction in constraining black hole spin , 2014, 1408.2347.

[74]  U. Kolb,et al.  ENERGY-DEPENDENT EVOLUTION IN IC10 X-1: HARD EVIDENCE FOR AN EXTENDED CORONA AND IMPLICATIONS , 2014, 1407.5650.

[75]  A. Fabian,et al.  On the determination of the spin and disc truncation of accreting black holes using X-ray reflection , 2014, 1401.1615.

[76]  Javier A. García,et al.  IMPROVED REFLECTION MODELS OF BLACK HOLE ACCRETION DISKS: TREATING THE ANGULAR DISTRIBUTION OF X-RAYS , 2013, 1312.3231.

[77]  G. Ponti,et al.  The truncated and evolving inner accretion disc of the black hole GX 339-4 , 2013, 1309.4781.

[78]  Joern Wilms,et al.  The Hot and Energetic Universe: A White Paper presenting the science theme motivating the Athena+ mission , 2013 .

[79]  L. Ho,et al.  Coevolution (Or Not) of Supermassive Black Holes and Host Galaxies , 2013, 1308.6483.

[80]  William W. Zhang,et al.  THE NUCLEAR SPECTROSCOPIC TELESCOPE ARRAY (NuSTAR) HIGH-ENERGY X-RAY MISSION , 2013, Astronomical Telescopes and Instrumentation.

[81]  T. Dauser,et al.  Irradiation of an accretion disc by a jet: general properties and implications for spin measurements of black holes , 2013, 1301.4922.

[82]  G. D. Cesare,et al.  The magnetic field in the X-ray corona of Cygnus X-1 , 2012, 1212.2040.

[83]  A. Merloni,et al.  Evolution of active galactic nuclei , 2012, 1204.4265.

[84]  L. G. Boté,et al.  Laser Interferometer Space Antenna , 2012 .

[85]  G. Ponti,et al.  Ubiquitous equatorial accretion disc winds in black hole soft states , 2012, 1201.4172.

[86]  Joern Wilms,et al.  CORONA, JET, AND RELATIVISTIC LINE MODELS FOR SUZAKU/RXTE/CHANDRA-HETG OBSERVATIONS OF THE CYGNUS X-1 HARD STATE , 2010, 1012.4801.

[87]  Benno Willke,et al.  The Einstein Telescope: a third-generation gravitational wave observatory , 2010 .

[88]  T. Belloni,et al.  Fast variability as a tracer of accretion regimes in black hole transients , 2010, 1008.0558.

[89]  J. Tomsick,et al.  TRUNCATION OF THE INNER ACCRETION DISK AROUND A BLACK HOLE AT LOW LUMINOSITY , 2009, 0911.2240.

[90]  A. Fabian,et al.  Black hole accretion discs in the canonical low‐hard state , 2009, 0911.1151.

[91]  C. Power,et al.  Primordial globular clusters, X-ray binaries and cosmological reionization , 2009, 0902.1897.

[92]  A. Bazzano,et al.  UNVEILING THE HIGH ENERGY TAIL OF 1E 1740.7–2942 WITH INTEGRAL , 2008, 0811.3381.

[93]  P. Ubertini,et al.  Spectral variability of GX 339−4 in a hard-to-soft state transition , 2008, 0807.1018.

[94]  A. Fabian,et al.  A systematic look at the Very High and Low/Hard state of GX 339-4: Constraining the black hole spin with a new reflection model , 2008, 0804.0238.

[95]  J. Orosz,et al.  Precise Measurement of the Spin Parameter of the Stellar-Mass Black Hole M33 X-7 , 2008, 0803.1834.

[96]  J. Tomsick,et al.  Broadband X-Ray Spectra of GX 339–4 and the Geometry of Accreting Black Holes in the Hard State , 2008, 0802.3357.

[97]  A. Fabian,et al.  Broad Iron-Kα Emission Lines as a Diagnostic of Black Hole Spin , 2007, 0711.4158.

[98]  Aya Kubota,et al.  Modelling the behaviour of accretion flows in X-ray binaries , 2007, 0708.0148.

[99]  R. Genzel,et al.  A Close Look at Star Formation around Active Galactic Nuclei , 2007, 0704.1374.

[100]  P. Uttley,et al.  Active galactic nuclei as scaled-up Galactic black holes , 2006, Nature.

[101]  J. Paradijs,et al.  Catalogue of high-mass X-ray binaries in the Galaxy (4th edition) , 2006, 0707.0549.

[102]  S. Jester,et al.  Accretion states and radio loudness in active galactic nuclei: analogies with X-ray binaries , 2006, astro-ph/0608628.

[103]  J. McClintock,et al.  X-Ray Properties of Black-Hole Binaries , 2006, astro-ph/0606352.

[104]  S. Markoff,et al.  Going with the Flow: Can the Base of Jets Subsume the Role of Compact Accretion Disk Coronae? , 2005, astro-ph/0509028.

[105]  Alan A. Wells,et al.  The Swift Gamma-Ray Burst Mission , 2004, astro-ph/0405233.

[106]  C. Cassi,et al.  The INTEGRAL spacecraft - in-orbit performance , 2003 .

[107]  J. McClintock,et al.  Black Hole Binaries , 2003, astro-ph/0306213.

[108]  H. Falcke,et al.  A scheme to unify low-power accreting black holes Jet-dominated accretion flows and the radio/X-ray correlation , 2003, astro-ph/0305335.

[109]  B. Liu,et al.  Spectra from a Magnetic Reconnection-heated Corona in Active Galactic Nuclei , 2003, astro-ph/0301142.

[110]  A. Loeb,et al.  The Reionization of the Universe by the First Stars and Quasars , 2000, astro-ph/0010467.

[111]  M. Gierliński,et al.  Radiation mechanisms and geometry of cygnus X-1 in the soft state , 1999, astro-ph/9905146.

[112]  C. Done,et al.  The 1989 May outburst of the soft X‐ray transient GS 2023+338 (V404 Cyg) , 1999, astro-ph/9904304.

[113]  D. Watson,et al.  The Swift X-Ray Telescope , 1999, SPIE Optics + Photonics.

[114]  P. Coppi The Physics of Hybrid Thermal/Non-Thermal Plasmas , 1999, astro-ph/9903158.

[115]  D. Smith,et al.  Correlation between Compton reflection and X-ray slope in Seyferts and X-ray binaries , 1998, astro-ph/9812215.

[116]  A. Fabian,et al.  Iron line profiles including emission from within the innermost stable orbit of a black hole accretion disc , 1998, astro-ph/9808089.

[117]  J. Grove,et al.  Gamma-Ray Spectral States of Galactic Black Hole Candidates , 1998, astro-ph/9802242.

[118]  R. Terlevich,et al.  The cosmological evolution of the QSO luminosity density and of the star formation rate , 1997, astro-ph/9710134.

[119]  C. Reynolds,et al.  Iron Fluorescence from within the Innermost Stable Orbit of Black Hole Accretion Disks , 1997, astro-ph/9705136.

[120]  A. Zdziarski,et al.  Broad-band γ-ray and X-ray spectra of NGC 4151 and their implications for physical processes and geometry , 1996, astro-ph/9607015.

[121]  P. Padovani,et al.  UNIFIED SCHEMES FOR RADIO-LOUD ACTIVE GALACTIC NUCLEI , 1995, astro-ph/9506063.

[122]  A. Fabian,et al.  On re-acceleration, pairs and the high-energy spectrum of AGN and Galactic black hole candidates , 1993 .

[123]  Laura Maraschi,et al.  X-Ray Spectra from Two-Phase Accretion Disks , 1993 .

[124]  Laura Maraschi,et al.  A two-phase model for the X-ray emission from Seyfert galaxies , 1991 .

[125]  Andrew C. Fabian,et al.  X-ray reflection from cold matter in Active Galactic Nuclei and X-ray binaries , 1991 .

[126]  Kazuhisa Mitsuda,et al.  Simultaneous X-ray and optical observations of GX 339-4 in an X-ray high state , 1986 .

[127]  S. K. Ride,et al.  Absorption of X-rays in the interstellar medium , 1977 .

[128]  S. Blinnikov,et al.  Disk accretion onto a black hole at subcritical luminosity. , 1977 .

[129]  V. Dhawan,et al.  Disc-jet coupling in the 2009 outburst of the black hole candidate H 1743-322 , 2019 .

[130]  P. Gondoin,et al.  XMM-Newton observatory. I. The spacecraft and operations , 2001 .

[131]  M. Begelman,et al.  Self-consistent Thermal Accretion Disk Corona Models for Compact Objects. II. Application to Cygnus X-1 , 1997 .

[132]  A. Zdziarski,et al.  Acceleration Efficiency in Nonthermal Sources and the Soft Gamma-rays from NGC 4151 Observed by OSSE and SIGMA , 1994 .

[133]  K. Koyama,et al.  Energy spectra of low-mass binary X-ray sources observed from TENMA , 1984 .