Recharging Probably Keeps Batteries Alive

Battery powered systems are a major area of cyber physical system innovation. This paper develops a kinetic battery model with bounded capacity in the context of piecewise constant yet random charging and discharging. The resulting model enables a faithful time-dependent evaluation of the risk of a mission failure due to battery depletion. This is exemplified in a power dependability study of a nano satellite mission currently in orbit.

[1]  Gaston H. Gonnet,et al.  On the LambertW function , 1996, Adv. Comput. Math..

[2]  Kishor S. Trivedi,et al.  Performance and Reliability Analysis Using Directed Acyclic Graphs , 1987, IEEE Transactions on Software Engineering.

[3]  Boudewijn R. Haverkort,et al.  Which battery model to use? , 2008, IET Softw..

[4]  John Lygeros,et al.  Bisimulation for General Stochastic Hybrid Systems , 2005, HSCC.

[5]  Marijn R. Jongerden,et al.  Model-based energy analysis of battery powered systems , 2010 .

[6]  Thomas A. Henzinger,et al.  The Embedded Systems Design Challenge , 2006, FM.

[7]  Alan Lipschultz,et al.  Batteries in a Portable World , 2015 .

[8]  José Villén-Altamirano,et al.  RESTART: a straightforward method for fast simulation of rare events , 1994, Proceedings of Winter Simulation Conference.

[9]  Alessandro Abate,et al.  FAUST 2 : Formal Abstractions of Uncountable-STate STochastic Processes , 2014, TACAS.

[10]  D. Gillespie A General Method for Numerically Simulating the Stochastic Time Evolution of Coupled Chemical Reactions , 1976 .

[11]  Joost-Pieter Katoen,et al.  Maximizing system lifetime by battery scheduling , 2009, 2009 IEEE/IFIP International Conference on Dependable Systems & Networks.

[12]  Mark H. A. Davis Piecewise‐Deterministic Markov Processes: A General Class of Non‐Diffusion Stochastic Models , 1984 .

[13]  Rami G. Melhem,et al.  Dynamic and aggressive scheduling techniques for power-aware real-time systems , 2001, Proceedings 22nd IEEE Real-Time Systems Symposium (RTSS 2001) (Cat. No.01PR1420).

[14]  A. Emadi,et al.  Battery balancing methods: A comprehensive review , 2008, 2008 IEEE Vehicle Power and Propulsion Conference.

[15]  N. S. Barnett,et al.  Private communication , 1969 .

[16]  van der Arjan Schaft,et al.  Stochastic Hybrid Systems: Theory and Safety Critical Applications , 2006 .

[17]  Boudewijn R. Haverkort,et al.  Computing Battery Lifetime Distributions , 2007, 37th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN'07).

[18]  Martin Fränzle,et al.  Stochastic Satisfiability Modulo Theory: A Novel Technique for the Analysis of Probabilistic Hybrid Systems , 2008, HSCC.

[19]  Thomas A. Henzinger,et al.  The theory of hybrid automata , 1996, Proceedings 11th Annual IEEE Symposium on Logic in Computer Science.

[20]  James F. Manwell,et al.  LEAD-ACID-BATTERY STORAGE MODEL FOR HYBRID ENERGY-SYSTEMS , 1993 .

[21]  Anshul Kumar,et al.  Battery model for embedded systems , 2005, 18th International Conference on VLSI Design held jointly with 4th International Conference on Embedded Systems Design.

[22]  Fadi J. Kurdahi,et al.  Power-aware scheduling under timing constraints for mission-critical embedded systems , 2001, DAC '01.

[23]  M. Hervieu,et al.  Electronic Crystallization in a Lithium Battery Material: Columnar Ordering of Electrons and Holes in the Spinel LiMn 2 O 4 , 1998 .

[24]  Herbert L Case,et al.  Correlation of Arrhenius behaviors in power and capacity fades with cell impedance and heat generation in cylindrical lithium-ion cells , 2003 .

[25]  Maria Fox,et al.  Automatic Construction of Efficient Multiple Battery Usage Policies , 2011, IJCAI.

[26]  Thomas A. Henzinger,et al.  Battery transition systems , 2014, POPL.

[27]  E.A. Lee,et al.  Synchronous data flow , 1987, Proceedings of the IEEE.

[28]  Lijun Zhang,et al.  Safety Verification for Probabilistic Hybrid Systems , 2010, Eur. J. Control.

[29]  Kim G. Larsen,et al.  Battery-Aware Scheduling of Mixed Criticality Systems , 2014, ISoLA.

[30]  Sander Stuijk,et al.  A scenario-aware data flow model for combined long-run average and worst-case performance analysis , 2006, Fourth ACM and IEEE International Conference on Formal Methods and Models for Co-Design, 2006. MEMOCODE '06. Proceedings..

[31]  Lijun Zhang,et al.  Measurability and safety verification for stochastic hybrid systems , 2011, HSCC '11.

[32]  E. Altman,et al.  Asymptotic Optimization of a Nonlinear Hybrid System Governed by a Markov Decision Process , 1997 .

[33]  John Lygeros,et al.  Probabilistic reachability and safety for controlled discrete time stochastic hybrid systems , 2008, Autom..