Regular structures of lines in complex spaces

We study the properties of regular structures of lines, such as equiangular sets of lines and mutually unbiased bases (MUBs) in a general setting that includes real, complex and quaternionic spaces. We formulate a common generalization of several results in real and complex spaces that also hold in the quaternionic space. A set of lines is called equiangular if the angle between each pair is the same. A set of MUBs is a collection of orthonormal bases such that the angle between vectors from different bases is constant. Regular structures of lines have been studied in several fields such as digital communication, quantum computing, discrete mathematics and analysis. Our new concept of a multipartite equiangular set of lines is a common generalization of equiangular lines and MUBs. We prove a bound on the size of such set of lines, which generalizes the well-known absolute upper bounds. The existence of d + 1 MUBs in Cd is only known for prime power dimensions. We study sets of d + 1 MUBs that are the union of a standard basis and an orbit of the Weyl-Heisenberg group. As an example, we construct such MUBs in prime power dimensions. We also show connections between spherical 2-designs and other structures of lines. Fiducial vectors have been widely used to construct large sets of equiangular lines. A complex vector is fiducial if its orbit under a Weyl-Heisenberg group is an equiangular set of d2 lines. We give a new characterization of fiducial vectors, one that simplifies and significantly reduces the number of equations that must be solved to find a fiducial vector. We consider some possible classes of fiducial vectors and prove several nonexistence results. For example, using our new characterization we prove that the construction of fiducial vectors in small prime dimensions by Appleby (2005) essentially does not generalize. Finally, we give some methods for constructing equiangular sets of lines in complex and quaternionic spaces. We also find numerical fiducial vectors with high precision in Cd , d ≤ 21.

[1]  A. Calderbank,et al.  Z4‐Kerdock Codes, Orthogonal Spreads, and Extremal Euclidean Line‐Sets , 1997 .

[2]  L. L. Sanchez-Soto,et al.  Geometrical approach to mutually unbiased bases , 2007, 0706.2626.

[3]  V. Paulsen,et al.  Frames, graphs and erasures , 2004, math/0406134.

[4]  Douglas Farenick,et al.  Algebras of linear transformations , 2000 .

[5]  J. Seidel,et al.  Spherical codes and designs , 1977 .

[6]  K. Brown,et al.  Graduate Texts in Mathematics , 1982 .

[7]  Andrew M. Childs,et al.  The limitations of nice mutually unbiased bases , 2004, quant-ph/0412066.

[8]  Georgios B. Giannakis,et al.  Achieving the Welch bound with difference sets , 2005, IEEE Transactions on Information Theory.

[9]  P. Seymour,et al.  Averaging sets: A generalization of mean values and spherical designs , 1984 .

[10]  Barry C. Sanders,et al.  Optimal fingerprinting strategies with one-sided error , 2005, Quantum Inf. Comput..

[11]  Aidan Roy,et al.  Complex lines with restricted angles , 2013, 1306.0978.

[12]  I. D. Ivonovic Geometrical description of quantal state determination , 1981 .

[13]  Guang Gong,et al.  Signal Design for Good Correlation: Preface , 2005 .

[14]  Mahdad Khatirinejad,et al.  On Weyl-Heisenberg orbits of equiangular lines , 2008 .

[15]  I. Daubechies,et al.  PAINLESS NONORTHOGONAL EXPANSIONS , 1986 .

[16]  A. Rao The football , 2001 .

[17]  Joseph M. Renes,et al.  Symmetric informationally complete quantum measurements , 2003, quant-ph/0310075.

[18]  John J. Benedetto,et al.  Finite Normalized Tight Frames , 2003, Adv. Comput. Math..

[19]  Christopher A. Fuchs,et al.  Physical Significance of Symmetric Informationally-Complete Sets of Quantum States , 2007 .

[20]  S. G. Hoggar 64 Lines from a Quaternionic Polytope , 1998 .

[21]  P. Oscar Boykin,et al.  A New Proof for the Existence of Mutually Unbiased Bases , 2002, Algorithmica.

[22]  P. Oscar Boykin,et al.  Real Mutually Unbiased Bases , 2005 .

[23]  Raymond Laflamme,et al.  An Introduction to Quantum Computing , 2007, Quantum Inf. Comput..

[24]  Andreas Klappenecker,et al.  Constructions of Mutually Unbiased Bases , 2003, International Conference on Finite Fields and Applications.

[25]  G. Dixon,et al.  On quaternions and octonions: Their geometry, arithmetic, and symmetry , 2004 .

[26]  H. Coxeter,et al.  Regular Complex Polytopes , 1991 .

[27]  Andreas Klappenecker,et al.  Mutually unbiased bases are complex projective 2-designs , 2005, Proceedings. International Symposium on Information Theory, 2005. ISIT 2005..

[28]  R. Duffin,et al.  A class of nonharmonic Fourier series , 1952 .

[29]  W. Rudin Function Theory in the Unit Ball of Cn , 1980 .

[30]  W. Wootters,et al.  Optimal state-determination by mutually unbiased measurements , 1989 .

[31]  Igor E. Shparlinski,et al.  Constructions of Approximately Mutually Unbiased Bases , 2006, LATIN.

[32]  Aidan Roy,et al.  Equiangular lines, mutually unbiased bases, and spin models , 2009, Eur. J. Comb..

[33]  J. M. Goethals THE REGULAR TWO-GRAPH ON 276 VERTICES , 1991 .

[34]  M. Grassl On SIC-POVMs and MUBs in Dimension 6 , 2004, quant-ph/0406175.

[35]  H. H. Mitchell Determination of All Primitive Collineation Groups in More than Four Variables which Contain Homologies , 1914 .

[36]  William O. Alltop,et al.  Complex sequences with low periodic correlations (Corresp.) , 1980, IEEE Trans. Inf. Theory.

[37]  Akihiro Munemasa,et al.  The nonexistence of certain tight spherical designs , 2005 .

[38]  N. J. A. Sloane,et al.  Packing Lines, Planes, etc.: Packings in Grassmannian Spaces , 1996, Exp. Math..

[39]  Deepti Kalra,et al.  Complex equiangular cyclic frames and erasures , 2006 .

[40]  Richard M. Wilson,et al.  A course in combinatorics , 1992 .

[41]  Steven T. Flammia On SIC-POVMs in prime dimensions , 2006 .

[42]  Dominique de Caen,et al.  Large Equiangular Sets of Lines in Euclidean Space , 2000, Electron. J. Comb..

[43]  C. Colbourn,et al.  Mutually orthogonal latin squares (MOLS) , 2006 .

[44]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[45]  D. Farenick,et al.  The spectral theorem in quaternions , 2003 .

[46]  A. Hurwitz,et al.  Ueber die Composition der quadratischen Formen von belibig vielen Variablen , 1898 .

[47]  Chris D. Godsil,et al.  ALGEBRAIC COMBINATORICS , 2013 .

[48]  Thomas Strohmer,et al.  GRASSMANNIAN FRAMES WITH APPLICATIONS TO CODING AND COMMUNICATION , 2003, math/0301135.

[49]  L. D. Baumert,et al.  On the existence of cyclic difference sets with small parameters , 2003, math/0304502.

[50]  A. Klappenecker,et al.  On approximately symmetric informationally complete positive operator-valued measures and related systems of quantum states , 2005, quant-ph/0503239.

[51]  Masahide Sasaki,et al.  Squeezing quantum information through a classical channel: measuring the "quantumness" of a set of quantum states , 2003, Quantum Inf. Comput..

[52]  J. Seidel,et al.  BOUNDS FOR SYSTEMS OF LINES, AND JACOBI POLYNOMIALS , 1975 .

[53]  Markus Grassl Tomography of Quantum States in Small Dimensions , 2005, Electron. Notes Discret. Math..

[54]  Simon Lyngby Kokkendorff,et al.  Geometry and Combinatorics , 2002 .

[55]  Robert W. Heath,et al.  Congruent Voronoi tessellations from equiangular lines , 2007 .

[56]  R. Craigen,et al.  Hadamard Matrices and Hadamard Designs , 2006 .

[57]  Joseph M. Renes Equiangular tight frames from Paley tournaments , 2007 .

[58]  Dilip V. Sarwate Meeting the Welch Bound with Equality , 1998, SETA.

[59]  Pawel Wocjan,et al.  New construction of mutually unbiased bases in square dimensions , 2005, Quantum Inf. Comput..

[60]  Hadi Kharaghani,et al.  Balanced Generalized Weighing Matrices and Conference Matrices , 2006 .

[61]  J. J. Seidel,et al.  Equilateral point sets in elliptic geometry , 1966 .

[62]  D. M. Appleby Symmetric informationally complete–positive operator valued measures and the extended Clifford group , 2005 .

[63]  P. Oscar Boykin,et al.  Mutually unbiased bases and orthogonal decompositions of Lie algebras , 2005, Quantum Inf. Comput..

[64]  George E. Andrews,et al.  Number theory , 1971, Bicycle or Unicycle?.

[65]  P. Casazza THE ART OF FRAME THEORY , 1999, math/9910168.

[66]  William O. Alltop,et al.  Complex sequences with low periodic correlations , 1980 .

[67]  Lloyd R. Welch,et al.  Lower bounds on the maximum cross correlation of signals (Corresp.) , 1974, IEEE Trans. Inf. Theory.

[68]  Mátyás A. Sustik,et al.  On the existence of equiangular tight frames , 2007 .

[69]  A. Hurwitz Über die Komposition der quadratischen Formen von beliebig vielen Variablen , 1963 .

[70]  John H. Conway,et al.  On Quaternions and Octonions , 2003 .

[71]  Fuzhen Zhang Quaternions and matrices of quaternions , 1997 .

[72]  Gordon F. Royle,et al.  Algebraic Graph Theory , 2001, Graduate texts in mathematics.

[73]  Wojciech T. Bruzda,et al.  Mutually unbiased bases and Hadamard matrices of order six , 2007 .

[74]  K. B. Reid,et al.  Doubly Regular Tournaments are Equivalent to Skew Hadamard Matrices , 1972, J. Comb. Theory, Ser. A.

[75]  Jean-Pierre Serre,et al.  Quelques applications du théorème de densité de Chebotarev , 1981 .

[76]  C. Fuchs,et al.  Unknown Quantum States: The Quantum de Finetti Representation , 2001, quant-ph/0104088.

[77]  Henry Cohn,et al.  Universally optimal distribution of points on spheres , 2006, math/0607446.

[78]  Achill Schürmann,et al.  Experimental Study of Energy-Minimizing Point Configurations on Spheres , 2009, Exp. Math..

[79]  S. G. Hoggar Two Quaternionic 4-Polytopes , 1981 .

[80]  Joel A. Tropp Complex equiangular tight frames , 2005, SPIE Optics + Photonics.