Decomposition of mineral absorption bands using nonlinear least squares curve fitting: Application to Martian meteorites and CRISM data

Abstract This study advances curve-fitting modeling of absorption bands of reflectance spectra and applies this new model to spectra of Martian meteorites ALH 84001 and EETA 79001 and data from the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM). This study also details a recently introduced automated parameter initialization technique. We assess the performance of this automated procedure by comparing it to the currently available initialization method and perform a sensitivity analysis of the fit results to variation in initial guesses. We explore the issues related to the removal of the continuum, offer guidelines for continuum removal when modeling the absorptions and explore different continuum-removal techniques. We further evaluate the suitability of curve fitting techniques using Gaussians/Modified Gaussians to decompose spectra into individual end-member bands. We show that nonlinear least squares techniques such as the Levenberg–Marquardt algorithm achieve comparable results to the MGM model ( Sunshine and Pieters, 1993 , Sunshine et al., 1990 ) for meteorite spectra. Finally we use Gaussian modeling to fit CRISM spectra of pyroxene and olivine-rich terrains on Mars. Analysis of CRISM spectra of two regions show that the pyroxene-dominated rock spectra measured at Juventae Chasma were modeled well with low Ca pyroxene, while the pyroxene-rich spectra acquired at Libya Montes required both low-Ca and high-Ca pyroxene for a good fit.

[1]  Roger N. Clark,et al.  Causes of spurious features in spectral reflectance data , 1987 .

[2]  N. Izenberg,et al.  Hydrated silicate minerals on Mars observed by the Mars Reconnaissance Orbiter CRISM instrument , 2008, Nature.

[3]  A. Tarantola,et al.  Generalized Nonlinear Inverse Problems Solved Using the Least Squares Criterion (Paper 1R1855) , 1982 .

[4]  J. Crisp,et al.  Mid‐infrared spectroscopy of Pahala ash palagonite and implications for remote sensing studies of Mars , 1992 .

[5]  S. Murchie,et al.  Spectrally distinct ejecta in Syrtis Major, Mars: Evidence for environmental change at the Hesperian-Amazonian boundary , 2010 .

[6]  Michael J. Gaffey,et al.  Spectral reflectance characteristics of the meteorite classes , 1976 .

[7]  J. Mustard,et al.  Mafic Mineralogy Variations Across Syrtis Major Shield and Surroundings as Inferred from Visible-Near-Infrared Spectroscopy by OMEGA/Mars Express , 2007 .

[8]  H. McSween,et al.  Petrogenesis of the Elephant Moraine A79001 meteorite Multiple magma pulses on the shergottite parent body , 1983 .

[9]  H. Mao,et al.  Optical and chemical analysis of iron in Luna 20 plagioclase , 1973 .

[10]  T. Hiroi,et al.  Discovery and Analysis of Minor Absorption Bands in S-Asteroid Visible Reflectance Spectra , 1996 .

[11]  Y. Langevin,et al.  Olivine and Pyroxene Diversity in the Crust of Mars , 2005, Science.

[12]  P. R. Bevington,et al.  Data Reduction and Error Analysis for the Physical Sciences , 1969 .

[13]  S. Erard,et al.  Results from the ISM experiment , 1989, Nature.

[14]  Harry Y. McSween,et al.  The rocks of Mars, from far and near , 2002 .

[15]  Patrick C. McGuire,et al.  Mineralogy of Juventae Chasma: Sulfates in the light‐toned mounds, mafic minerals in the bedrock, and hydrated silica and hydroxylated ferric sulfate on the plateau , 2009 .

[16]  Kenneth Levenberg A METHOD FOR THE SOLUTION OF CERTAIN NON – LINEAR PROBLEMS IN LEAST SQUARES , 1944 .

[17]  J. Hunt,et al.  Determination of Mineral Constituents of Rocks by Infrared Spectroscopy , 1953 .

[18]  Aline Gendrin,et al.  Assessing the limits of the Modified Gaussian Model for remote spectroscopic studies of pyroxenes on Mars , 2007 .

[19]  T. Hiroi,et al.  Recognition of minor constituents in reflectance spectra of Allan Hills 84001 chips and the importance for remote sensing on Mars , 1998 .

[20]  R. Singer Near-infrared spectral reflectance of mineral mixtures - Systematic combinations of pyroxenes, olivine, and iron oxides , 1981 .

[21]  T. Encrenaz,et al.  Mars Surface Diversity as Revealed by the OMEGA/Mars Express Observations , 2005, Science.

[22]  Carle M. Pieters,et al.  Moon: near-infrared spectral reflectance, a first good look. , 1981 .

[23]  Roger G. Burns,et al.  Mineralogical applications of crystal field theory , 1970 .

[24]  Benoit Rivard,et al.  Technical Note: Equivalence of modified Gaussian model (MGM) in wavenumber and Gaussian in wavelength for deconvolution of hyperspectral reflectance spectra , 2008 .

[25]  R. Wäsch,et al.  Near-infrared reflectance spectroscopy of Ca-rich clinopyroxenes and prospects for remote spectral characterization of planetary surfaces , 2004 .

[26]  R. Binzel,et al.  High‐calcium pyroxene as an indicator of igneous differentiation in asteroids and meteorites , 2004 .

[27]  M. D. Craig,et al.  Analysis of aircraft spectrometer data with logarithmic residuals , 1985 .

[28]  J. Bell,et al.  Observational evidence of crystalline iron oxides on Mars , 1990 .

[29]  M. A. Herman,et al.  Infrared Intensity Measurements by Band Contour Analysis , 1978 .

[30]  W. I. Friesen,et al.  Diffuse reflectance infrared spectra of kaolinite and kaolinite/alkali halide mixtures. Curve-fitting of the OH stretching region , 1991 .

[31]  C. Pieters,et al.  Remote geochemical analysis : elemental and mineralogical composition , 1993 .

[32]  E. Ivins,et al.  Global geodetic signatures of the Antarctic Ice Sheet , 1997 .

[33]  U. Schade,et al.  Near‐infrared reflectance spectra from bulk samples of the two Martian meteorites Zagami and Nakhla , 1999 .

[34]  M. D. Dyar,et al.  The influence of octahedral and tetrahedral cation substitution on the structure of smectites and serpentines as observed through infrared spectroscopy , 2002, Clay Minerals.

[35]  L. McFadden,et al.  Spectral reflectance of Martian meteorites: Spectral signatures as a template for locating source region on Mars , 2005 .

[36]  L. Antonov Drawbacks of the present standards for processing absorption spectra recorded linearly as a function of wavelength , 1997 .

[37]  Loredana Pompilio,et al.  Exponential Gaussian approach for spectral modeling: The EGO algorithm I. Band saturation , 2009 .

[38]  Carle M. Pieters,et al.  Reflectance Spectra of the Elephant Moraine A79001 Meteorite: Implications for Remote Sensing of Planetary Bodies , 1993 .

[39]  Michael J. Gaffey,et al.  Calibrations of phase abundance, composition, and particle size distribution for olivine-orthopyroxene mixtures from reflectance spectra , 1986 .

[40]  C. Karr Infrared and Raman spectroscopy of lunar and terrestrial minerals , 1975 .

[41]  J F Mustard,et al.  Seeing through the dust: martian crustal heterogeneity and links to the SNC meteorites , 1995, Science.

[42]  R. Singer,et al.  Gaussian analysis of temperature effects on the reflectance spectra of mafic minerals in the 1‐μm region , 1986 .

[43]  P. Christensen,et al.  Surface and crater‐exposed lithologic units of the Isidis Basin as mapped by coanalysis of THEMIS and TES derived data products , 2008 .

[44]  Roger N. Clark,et al.  Water frost and ice - The near-infrared spectral reflectance 0.65-2.5 microns. [observed on natural satellites and other solar system objects , 1981 .

[45]  D. Marquardt An Algorithm for Least-Squares Estimation of Nonlinear Parameters , 1963 .

[46]  S. J. Sutley,et al.  Imaging spectroscopy: Earth and planetary remote sensing with the USGS Tetracorder and expert systems , 2003 .

[47]  Carle M. Pieters,et al.  Determining the composition of olivine from reflectance spectroscopy , 1998 .

[48]  Trent M. Hare,et al.  Possible Juventae Chasma subice volcanic eruptions and Maja Valles ice outburst floods on Mars: Implications of Mars Global Surveyor crater densities, geomorphology, and topography , 2003 .

[49]  Mario Parente,et al.  Deconvolution of VNIR spectra using modified Gaussian modeling (MGM) with automatic parameter initialization (API) applied to CRISM , 2009, 2009 First Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing.

[50]  Roger N. Clark,et al.  Automatic continuum analysis of reflectance spectra , 1987 .

[51]  D. Mittlefehldt,et al.  ALH84001, a cumulate orthopyroxenite member of the martian meteorite clan , 1994 .

[52]  C. M. Pieters,et al.  Strength of mineral absorption features in the transmitted component of near-infrared reflected light - First results from RELAB. [spectrogoniometer for planetary and lunar surface composition experiments] , 1983 .

[53]  R. N. Jones,et al.  The determination of the optical constants of benzene and chloroform in the i.r. by thin film transmission , 1976 .

[54]  S. Erard,et al.  In situ compositions of Martian volcanics: Implications for the mantle , 1997 .

[55]  Philip E. Gill,et al.  Practical optimization , 1981 .

[56]  Carle M. Pieters,et al.  Deconvolution of mineral absorption bands: An improved approach , 1990 .

[57]  J. Pitha,et al.  A COMPARISON OF OPTIMIZATION METHODS FOR FITTING CURVES TO INFRARED BAND ENVELOPES , 1966 .

[58]  Richard P. Binzel,et al.  MUSES‐C target asteroid (25143) 1998 SF36: A reddened ordinary chondrite , 2001 .

[59]  R. Clark,et al.  Mars: Near‐infrared spectral reflectance of surface regions and compositional implications , 1982 .

[60]  Tomoko Arai,et al.  Evaluation of a curve-fitting method for diffuse reflectance spectra in the UV–Visible–NIR wavelength region , 2009 .

[61]  Improved Scheme of Modified Gaussian Deconvolution for Reflectance Spectra of Lunar Soils , 2000 .

[62]  Raymond E. Arvidson,et al.  Compact Reconnaissance Imaging Spectrometer for Mars investigation and data set from the Mars Reconnaissance Orbiter's primary science phase , 2009 .

[63]  R. Clark,et al.  Reflectance spectroscopy: Quantitative analysis techniques for remote sensing applications , 1984 .

[64]  T. Hiroi,et al.  Spectroscopic analysis of Martian meteorite Allan Hills 84001 powder and applications for spectral identification of minerals and other soil components on Mars , 1998 .

[65]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[66]  M Craig Nonconvex hulls for mineral reflectance spectra. , 1994, Applied optics.

[67]  M. J. Wolff,et al.  CRISM multispectral summary products: Parameterizing mineral diversity on Mars from reflectance , 2007 .

[68]  Michael J. Gaffey,et al.  Pyroxene spectroscopy revisited - Spectral-compositional correlations and relationship to geothermometry , 1991 .

[69]  L. V. Moroz,et al.  Reflectance spectra of olivine-orthopyroxene-bearing assemblages at decreased temperatures: implications for remote sensing of asteroids , 2000 .

[70]  David A. Crown,et al.  Spectral properties of plagioclase and pyroxene mixtures and the interpretation of lunar soil spectra , 1987 .

[71]  Adrian J. Brown Spectral curve fitting for automatic hyperspectral data analysis , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[72]  M. Darby Dyar,et al.  Spectroscopy of synthetic Mg‐Fe pyroxenes I: Spin‐allowed and spin‐forbidden crystal field bands in the visible and near‐infrared , 2007 .

[73]  John B. Adams,et al.  4 – INTERPRETATION OF VISIBLE AND NEAR-INFRARED DIFFUSE REFLECTANCE SPECTRA OF PYROXENES AND OTHER ROCK-FORMING MINERALS , 1975 .

[74]  David C. Catling,et al.  Light-toned layered deposits in Juventae Chasma, Mars , 2006 .

[75]  Carle M. Pieters,et al.  Estimating modal abundances from the spectra of natural and laboratory pyroxene mixtures using the modified Gaussian model , 1993 .

[76]  Raymond E. Arvidson,et al.  Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) on Mars Reconnaissance Orbiter (MRO) , 2007 .

[77]  John F. Mustard,et al.  Photometric phase functions of common geologic minerals and applications to quantitative analysis of mineral mixture reflectance spectra , 1989 .

[78]  Roger N. Clark,et al.  Spectral properties of mixtures of montmorillonite and dark carbon grains: Implications for remote sensing minerals containing chemically and physically adsorbed water , 1983 .