Competitive accretion in embedded stellar clusters

We investigate the physics of gas accretion in young stellar clusters. Accretion in clusters is a dynamic phenomenon as both the stars and the gas respond to the same gravitational potential. Accretion rates are highly non-uniform with stars nearer the centre of the cluster, where gas densities are higher, accreting more than others. This competitive accretion naturally results in both initial mass segregation and a spectrum of stellar masses. Accretion in gas-dominated clusters is well modelled using a tidal-lobe radius instead of the commonly used Bondi–Hoyle accretion radius. This works as both the stellar and gas velocities are under the influence of the same gravitational potential and are thus comparable. The low relative velocity which results means that Rtidal<RBH in these systems. In contrast, when the stars dominate the potential and are virialized, RBH<Rtidal and Bondi–Hoyle accretion is a better fit to the accretion rates.

[1]  Alyson G. Wilson,et al.  Star formation from the small to the large scale , 2000 .

[2]  L. Hillenbrand,et al.  Constraints on the Stellar/Substellar Mass Function in the Inner Orion Nebula Cluster , 2000, astro-ph/0003293.

[3]  M. Bate Predicting the properties of binary stellar systems: the evolution of accreting protobinary systems , 2000, astro-ph/0002143.

[4]  A. Boss,et al.  Protostars and Planets VI , 2000 .

[5]  Charles J. Lada,et al.  The Origin of Stars and Planetary Systems , 1999 .

[6]  Telemachos Ch. Mouschovias,et al.  in The Origin of Stars and Planetary Systems , 1999 .

[7]  I. Bonnell,et al.  Mass segregation in young stellar clusters , 1998 .

[8]  L. Hillenbrand,et al.  A Preliminary Study of the Orion Nebula Cluster Structure and Dynamics , 1998 .

[9]  M. Meyer,et al.  Properties of the Monoceros R2 Stellar Cluster , 1997 .

[10]  L. Hillenbrand On the Stellar Population and Star-Forming History of the Orion Nebula Cluster , 1997 .

[11]  E. Lada,et al.  Spatial Distribution of Embedded Clusters in the Rosette Molecular Cloud: Implications for Cluster Formation , 1997 .

[12]  C. Clarke,et al.  Accretion and the stellar mass spectrum in small clusters , 1997 .

[13]  I. Bonnell,et al.  ACCRETION DURING BINARY STAR FORMATION. II : GASEOUS ACCRETION AND DISC FORMATION , 1997 .

[14]  I. Bonnell,et al.  Modelling accretion in protobinary systems , 1995, astro-ph/9510149.

[15]  J. Lunine,et al.  Protostars and planets III , 1993 .

[16]  M. Skrutskie,et al.  in Protostars and Planets III , 1993 .

[17]  E. Lada Global Star Formation in the L1630 Molecular Cloud , 1992 .

[18]  Elizabeth A. Lada,et al.  A 2.2 micron survey in the L1630 molecular cloud , 1991 .

[19]  C. Lada,et al.  Book-Review - the Physics of Star Formation and Early Stellar Evolution , 1991 .

[20]  J. Robert Buchler,et al.  The Numerical Modelling of Nonlinear Stellar Pulsations , 1990 .

[21]  William H. Press,et al.  Dynamic mass exchange in doubly degenerate binaries I , 1990 .

[22]  B. Shustov Protostars and Planets II , 1987 .

[23]  R. Taam,et al.  The evolution of protostars. I - Global formulation and results , 1980 .

[24]  Bohdan Paczynski,et al.  Evolutionary Processes in Close Binary Systems , 1971 .

[25]  Richard B. Larson,et al.  Numerical Calculations of the Dynamics of a Collapsing Proto-Star , 1969 .

[26]  H. Bondi,et al.  On spherically symmetrical accretion , 1952 .

[27]  F. Hoyle,et al.  On the Mechanism of Accretion by Stars , 1944 .