Virtual Design and Testing of Materials: A Multiscale Approach

Abstract : The aim of the work proposed here is the development of a virtual testing and design capability that can be used to test -- and suggest design strategies for -- new advanced structural materials. Our main objective is thus to develop a hierarchy of methods involving both seamless coupling of information from different scales (electronic to atomic; atomic to microstructural; micro- to macrostructural) and information transfer from one level of hierarchy to the next. As a secondary objective, each methodological advance will also be used to investigate specific phenomena at a single scale. The overall outcome of our work will be a coherent set of computational tools and advances in fundamental understanding of many issues in the thermomechanical performance of materials.

[1]  Emily A. Carter,et al.  Density-functional-theory-based local quasicontinuum method: Prediction of dislocation nucleation , 2004 .

[2]  Emily A. Carter,et al.  Spin-Dependent Pseudopotentials in the Solid State Environment , 2003 .

[3]  Gerbrand Ceder,et al.  Impurity-induced van der Waals transition during decohesion , 2003 .

[4]  William A. Curtin,et al.  A coupled atomistic/continuum model of defects in solids , 2002 .

[5]  Shaoxing Qu,et al.  A finite-temperature dynamic coupled atomistic/discrete dislocation method , 2005 .

[6]  Emily A Carter,et al.  Atomic origin of hysteresis during cyclic loading of Si due to bond rearrangements at the crack surfaces. , 2005, The Journal of chemical physics.

[7]  van der Erik Giessen,et al.  Incorporating three-dimensional mechanisms into two-dimensional dislocation dynamics , 2004 .

[8]  Vikram Deshpande,et al.  Discrete dislocation plasticity modeling of short cracks in single crystals , 2003 .

[9]  Gerbrand Ceder,et al.  The thermodynamics of decohesion , 2004 .

[10]  Vasily V. Bulatov,et al.  On stress assisted dislocation constriction and cross-slip , 2004 .

[11]  M. Ortiz,et al.  A quantum-mechanically informed continuum model of hydrogen embrittlement , 2004 .

[12]  William A. Curtin,et al.  Multiscale plasticity modeling: coupled atomistics and discrete dislocation mechanics , 2004 .

[13]  Vikram Deshpande,et al.  Discrete dislocation modelling of edge cracks in single crystals , 2002 .

[14]  M. Ortiz,et al.  A phenomenological cohesive model of ferroelectric fatigue , 2006 .

[15]  A. Needlemana,et al.  Discrete dislocation modeling of fatigue crack propagation , 2002 .

[16]  William A. Curtin,et al.  Coupled Atomistic/Discrete Dislocation Simulations of Nanoindentation at Finite Temperature , 2005 .

[17]  Emily A. Carter,et al.  Transferable local pseudopotentials derived via inversion of the Kohn-Sham equations in a bulk environment , 2004 .

[18]  Emily A. Carter,et al.  Prediction of dislocation nucleation during nanoindentation of Al3Mg by the orbital-free density functional theory local quasicontinuum method , 2006 .

[19]  Vasily V. Bulatov,et al.  A nonplanar Peierls–Nabarro model and its application to dislocation cross-slip , 2002, cond-mat/0208440.

[20]  O. T. Nguyen,et al.  Coarse-graining and renormalization of atomistic binding relations and universal macroscopic cohesive behavior , 2002 .

[21]  Emily A. Carter,et al.  Prediction of Dislocation Nucleation During Nanoindentation by the Orbital-Free Density Functional Theory Local Quasi-continuum Method , 2005, Multiscale Model. Simul..

[22]  E. Tadmor,et al.  Finite-temperature quasicontinuum: molecular dynamics without all the atoms. , 2005, Physical review letters.

[23]  William A. Curtin,et al.  Fracture in nanolamellar materials: Continuum and atomistic models with application to titanium aluminides , 2002 .

[24]  E. Carter,et al.  Orbital-free density functional theory calculations of the properties of Al, Mg and Al–Mg crystalline phases , 2003 .

[25]  V. S. Deshpandea,et al.  Scaling of discrete dislocation predictions for near-threshold fatigue crack growth , 2003 .

[26]  van der Erik Giessen,et al.  GNDs in nonlocal plasticity theories: lessons from discrete dislocation simulations , 2003 .

[27]  M. Ortiz,et al.  Universal binding-energy relation for crystals that accounts for surface relaxation , 2004 .

[28]  Vikram Deshpande,et al.  Discrete dislocation modeling of fatigue crack growth , 2002 .

[29]  William A. Curtin,et al.  A coupled atomistics and discrete dislocation plasticity simulation of nanoindentation into single crystal thin films , 2004 .

[30]  William A. Curtin,et al.  Modelling diffusion in crystals under high internal stress gradients , 2004 .