Shape and Biomechanical Characteristics of Human Red Blood Cells in Health and Disease

The biconcave shape and corresponding deformability of the human red blood cell (RBC) is an essential feature of its biological function. This feature of RBCs can be critically affected by genetic or acquired pathological conditions. In this review, we highlight new dynamic in vitro assays that explore various hereditary blood disorders and parasitic infectious diseases that cause disruption of RBC morphology and mechanics. In particular, recent advances in high-throughput microfluidic devices make it possible to sort/identify healthy and pathological human RBCs with different mechanobiological characteristics.

[1]  W T Tse,et al.  Red blood cell membrane disorders , 1999, British journal of haematology.

[2]  P. Agre,et al.  Alteration of the erythrocyte membrane skeletal ultrastructure in hereditary spherocytosis, hereditary elliptocytosis, and pyropoikilocytosis. , 1990, Blood.

[3]  A. Cowman,et al.  Contribution of parasite proteins to altered mechanical properties of malaria-infected red blood cells. , 2002, Blood.

[4]  Stefan Eber,et al.  Hereditary spherocytosis--defects in proteins that connect the membrane skeleton to the lipid bilayer. , 2004, Seminars in hematology.

[5]  Pradipsinh K Rathod,et al.  Deformability limits of Plasmodium falciparum-infected red blood cells , 2009, Cellular microbiology.

[6]  L. Pauling,et al.  Sickle cell anemia a molecular disease. , 1949, Science.

[7]  A. Craig,et al.  ICAM-1 can play a major role in mediating P. falciparum adhesion to endothelium under flow. , 2003, Molecular and biochemical parasitology.

[8]  Pradipsinh K Rathod,et al.  Microfluidic Modeling of Cell−Cell Interactions in Malaria Pathogenesis , 2007, PLoS pathogens.

[9]  R. Mukhopadhyay,et al.  Stomatocyte–discocyte–echinocyte sequence of the human red blood cell: Evidence for the bilayer– couple hypothesis from membrane mechanics , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[10]  J. White,et al.  Abnormal adherence of sickle erythrocytes to cultured vascular endothelium: possible mechanism for microvascular occlusion in sickle cell disease. , 1980, The Journal of clinical investigation.

[11]  P. Gallagher,et al.  Update on the clinical spectrum and genetics of red blood cell membrane disorders. , 2004, Current hematology reports.

[12]  S. Suresh,et al.  Mechanical response of human red blood cells in health and disease: Some structure-property-function relationships , 2006 .

[13]  R. Tompkins,et al.  Equilibrium separation and filtration of particles using differential inertial focusing. , 2008, Analytical chemistry.

[14]  S. Suresh,et al.  Cell and molecular mechanics of biological materials , 2003, Nature materials.

[15]  D. Boal,et al.  Simulations of the erythrocyte cytoskeleton at large deformation. II. Micropipette aspiration. , 1998, Biophysical journal.

[16]  Nir S. Gov,et al.  Metabolic remodeling of the human red blood cell membrane , 2010, Proceedings of the National Academy of Sciences.

[17]  Daniel T Chiu,et al.  A microfluidic model for single-cell capillary obstruction by Plasmodium falciparum-infected erythrocytes , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[18]  G. Nash,et al.  Membrane rigidity of red blood cells parasitized by different strains of Plasmodium falciparum. , 1993, The Journal of laboratory and clinical medicine.

[19]  C. Newbold,et al.  Intercellular adhesion molecule-1 is an endothelial cell adhesion receptor for Plasmodium falciparum , 1989, Nature.

[20]  P. Wong A basis of echinocytosis and stomatocytosis in the disc-sphere transformations of the erythrocyte. , 1999, Journal of theoretical biology.

[21]  B. Greenwood,et al.  Malaria in 2002 , 2002, Nature.

[22]  P. Rathod,et al.  Microfluidic approaches to malaria pathogenesis , 2008, Cellular microbiology.

[23]  A. Craig,et al.  Rolling and stationary cytoadhesion of red blood cells parasitized by Plasmodium falciparum: separate roles for ICAM‐1, CD36 and thrombospondin , 1994, British journal of haematology.

[24]  I. Gluzman,et al.  Plasmodium falciparum maturation abolishes physiologic red cell deformability. , 1984, Science.

[25]  L Mahadevan,et al.  Sickle cell vasoocclusion and rescue in a microfluidic device , 2007, Proceedings of the National Academy of Sciences.

[26]  N. Gov,et al.  Red blood cell membrane fluctuations and shape controlled by ATP-induced cytoskeletal defects. , 2005, Biophysical journal.

[27]  Subra Suresh,et al.  Cytoskeletal dynamics of human erythrocyte , 2007, Proceedings of the National Academy of Sciences.

[28]  L. Miller,et al.  Falciparum malaria-infected erythrocytes specifically bind to cultured human endothelial cells. , 1981, Science.

[29]  Sergey S Shevkoplyas,et al.  Biomimetic autoseparation of leukocytes from whole blood in a microfluidic device. , 2005, Analytical chemistry.

[30]  Bruce Russell,et al.  High deformability of Plasmodium vivax-infected red blood cells under microfluidic conditions. , 2009, The Journal of infectious diseases.

[31]  Brian Seed,et al.  CD36 directly mediates cytoadherence of Plasmodium falciparum parasitized erythrocytes , 1989, Cell.

[32]  David D. Roberts,et al.  Thrombospondin binds falciparum malaria parasitized erythrocytes and may mediate cytoadherence , 1985, Nature.

[33]  J. M. Oshorn Proc. Nat. Acad. Sei , 1978 .

[34]  J. Sturm,et al.  Deterministic hydrodynamics: Taking blood apart , 2006, Proceedings of the National Academy of Sciences.

[35]  S. Suresh,et al.  Spectrin-level modeling of the cytoskeleton and optical tweezers stretching of the erythrocyte. , 2005, Biophysical journal.

[36]  Andrew J. McMichael,et al.  Common West African HLA antigens are associated with protection from severe malaria , 1991, Nature.

[37]  R. Austin,et al.  Deformation and flow of red blood cells in a synthetic lattice: evidence for an active cytoskeleton. , 1995, Biophysical journal.

[38]  Chwee Teck Lim,et al.  Connections between single-cell biomechanics and human disease states: gastrointestinal cancer and malaria. , 2005, Acta biomaterialia.

[39]  J. Correas,et al.  Retention of Plasmodium falciparum ring-infected erythrocytes in the slow, open microcirculation of the human spleen. , 2008, Blood.

[40]  C. Ockenhouse,et al.  Identification of a platelet membrane glycoprotein as a falciparum malaria sequestration receptor. , 1989, Science.

[41]  P. Canham The minimum energy of bending as a possible explanation of the biconcave shape of the human red blood cell. , 1970, Journal of theoretical biology.

[42]  S. Lux,et al.  Hereditary spherocytosis and related disorders. , 1985, Clinics in haematology.

[43]  Yang,et al.  P. falciparum rosetting mediated by a parasite-variant erythrocyte membrane protein and complement-receptor 1 , 1997, Nature.

[44]  K. Silamut,et al.  Prognostic significance of reduced red blood cell deformability in severe falciparum malaria. , 1997, The American journal of tropical medicine and hygiene.

[45]  S. Suresh,et al.  Effect of plasmodial RESA protein on deformability of human red blood cells harboring Plasmodium falciparum , 2007, Proceedings of the National Academy of Sciences.

[46]  P. Vincent,et al.  Blood — Principles and Practice of Hematology , 1995 .

[47]  M. Ho,et al.  Synergism of multiple adhesion molecules in mediating cytoadherence of Plasmodium falciparum–infected erythrocytes to microvascular endothelial cells under flow , 2000 .

[48]  L. Kats,et al.  Functional alteration of red blood cells by a megadalton protein of Plasmodium falciparum. , 2009, Blood.

[49]  V. Ingram,et al.  A Specific Chemical Difference Between the Globins of Normal Human and Sickle-Cell Anæmia Hæmoglobin , 1956, Nature.

[50]  M. Yamada,et al.  Continuous particle separation in a microchannel having asymmetrically arranged multiple branches. , 2005, Lab on a chip.

[51]  Samuel E. Lux,et al.  Blood: Principles and Practice of Hematology , 1995 .

[52]  Rm,et al.  Sickle cell disease , 1996 .

[53]  Yongkeun Park,et al.  Refractive index maps and membrane dynamics of human red blood cells parasitized by Plasmodium falciparum , 2008, Proceedings of the National Academy of Sciences.

[54]  R. Coppel,et al.  Assignment of functional roles to parasite proteins in malaria‐infected red blood cells by competitive flow‐based adhesion assay , 2002, British journal of haematology.

[55]  Dennis E. Discher,et al.  PHASE TRANSITIONS AND ANISOTROPIC RESPONSES OF PLANAR TRIANGULAR NETS UNDER LARGE DEFORMATION , 1997 .

[56]  W. Helfrich Elastic Properties of Lipid Bilayers: Theory and Possible Experiments , 1973, Zeitschrift fur Naturforschung. Teil C: Biochemie, Biophysik, Biologie, Virologie.

[57]  D. Baruch,et al.  Plasmodium falciparum erythrocyte membrane protein 1 is a parasitized erythrocyte receptor for adherence to CD36, thrombospondin, and intercellular adhesion molecule 1. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[58]  L. D. Da Costa,et al.  Temporal differences in membrane loss lead to distinct reticulocyte features in hereditary spherocytosis and in immune hemolytic anemia. , 2001, Blood.