Toward recursive spherical harmonics-issued bi-filters: Part I: theoretical framework

This work lies in the whole topic of signal/image processing based on frequency decompositions. These are indeed applied in a variety of subjects such as estimation, reconstruction, shape recognition, filtering $$\dots $$⋯. Among these decompositions, spherical harmonics are widely used. Mathematically, spherical harmonics are special functions obtained as particular solutions of the Laplace equation generated by Legendre polynomials. Using the three-level recurrence relation of these polynomials, spherical harmonics recursive bases are revisited allowing the decompositions of signals in eigenmodes similar to Fourier ones. Special filters have been constructed and proved to be more efficient and accurate than existing ones as they lead to faster and more accurate algorithms.

[1]  Thomas Bülow,et al.  Surface Representations Using Spherical Harmonics and Gabor Wavelets on the Sphere , 2001 .

[2]  René Lagrange Polynômes et fonctions de Legendre , 1939 .

[3]  Gabriel Taubin,et al.  Geometric Signal Processing on Polygonal Meshes , 2000, Eurographics.

[4]  Omar Abu Arqub,et al.  Approximate Solutions of DASs with Nonclassical Boundary Conditions using Novel Reproducing Kernel Algorithm , 2016, Fundam. Informaticae.

[5]  Martin J. Mohlenkamp A fast transform for spherical harmonics , 1997 .

[6]  T. Chan,et al.  Genus zero surface conformal mapping and its application to brain surface mapping. , 2004, IEEE transactions on medical imaging.

[7]  I. Pacharoni,et al.  Matrix spherical functions and orthogonal polynomials: An instructive example , 2008 .

[8]  Omar Abu Arqub,et al.  The reproducing kernel algorithm for handling differential algebraic systems of ordinary differential equations , 2016 .

[9]  Anouar Ben Mabrouk,et al.  Wavelet Analysis on the Sphere: Spheroidal Wavelets , 2017 .

[10]  Marc Levoy,et al.  Texture synthesis over arbitrary manifold surfaces , 2001, SIGGRAPH.

[11]  Douglas W. Jones,et al.  Shape analysis of brain ventricles using SPHARM , 2001, Proceedings IEEE Workshop on Mathematical Methods in Biomedical Image Analysis (MMBIA 2001).

[12]  José Mennesson,et al.  De nouveaux descripteurs de Fourier géométriques pour l'analyse d'images couleur , 2010 .

[13]  Reiji Suda,et al.  A fast spherical harmonics transform algorithm , 2002, Math. Comput..

[14]  Alessandro Foi,et al.  Optimal Inversion of the Anscombe Transformation in Low-Count Poisson Image Denoising , 2011, IEEE Transactions on Image Processing.

[15]  Jurgen Prestin,et al.  Fast Fourier Transforms for Spherical Gauss-Laguerre Basis Functions , 2016, 1604.05140.

[16]  Fillia Makedon,et al.  A surface-based approach for classification of 3D neuroanatomic structures , 2004, Intell. Data Anal..

[17]  Pascal Frossard,et al.  FST-based Reconstruction of 3D-models from Non-Uniformly Sampled Datasets on the Sphere , 2006 .

[18]  Hujun Bao,et al.  3D surface filtering using spherical harmonics , 2004, Comput. Aided Des..

[19]  F. Low,et al.  Classical Field Theory: Electromagnetism and Gravitation , 1997 .

[20]  Gabriel Taubin,et al.  A signal processing approach to fair surface design , 1995, SIGGRAPH.

[21]  Moo K. Chung,et al.  Large-Scale Modeling of Parametric Surfaces Using Spherical Harmonics , 2006, Third International Symposium on 3D Data Processing, Visualization, and Transmission (3DPVT'06).

[22]  Mark Meyer,et al.  Implicit fairing of irregular meshes using diffusion and curvature flow , 1999, SIGGRAPH.

[23]  Thomas Bülow,et al.  Spherical Diffusion for 3D Surface Smoothing , 2004, 3DPVT.

[24]  Vlasios Vasileiou,et al.  FERMI LARGE AREA TELESCOPE SECOND SOURCE CATALOG , 2011 .

[25]  Moo K. Chung,et al.  Statistical and Computational Methods in Brain Image Analysis , 2013 .

[26]  Szymon Rusinkiewicz,et al.  Symmetry descriptors and 3D shape matching , 2004, SGP '04.

[27]  Sean S. B. Moore,et al.  FFTs for the 2-Sphere-Improvements and Variations , 1996 .

[28]  J. Tukey,et al.  An algorithm for the machine calculation of complex Fourier series , 1965 .

[29]  E. Striani,et al.  FERMI LARGE AREA TELESCOPE FIRST SOURCE CATALOG , 2010 .

[30]  Mioara Mandea,et al.  Wavelet frames: an alternative to spherical harmonic representation of potential fields , 2004 .

[31]  Omar Abu Arqub,et al.  Fitted reproducing kernel Hilbert space method for the solutions of some certain classes of time-fractional partial differential equations subject to initial and Neumann boundary conditions , 2017, Comput. Math. Appl..

[32]  Moo K. Chung,et al.  Tensor-Based Cortical Surface Morphometry via Weighted Spherical Harmonic Representation , 2008, IEEE Transactions on Medical Imaging.

[33]  Moo K. Chung,et al.  Weighted Fourier Series Representation and Its Application to Quantifying the Amount of Gray Matter , 2007, IEEE Transactions on Medical Imaging.

[34]  Kim M. Dalton,et al.  Encoding Cortical Surface by Spherical Harmonics , 2008 .