Stress responses ofBacillus subtilis to high osmolarity environments: Uptake and synthesis of osmoprotectants

[1]  E. Bremer,et al.  Response of Bacillus subtilis to high osmolarity: uptake of carnitine, crotonobetaine and γ-butyrobetaine via the ABC transport system OpuC. , 1998, Microbiology.

[2]  E. Bremer,et al.  Lipoprotein from the osmoregulated ABC transport system OpuA of Bacillus subtilis: purification of the glycine betaine binding protein and characterization of a functional lipidless mutant , 1997, Journal of bacteriology.

[3]  J. Boch,et al.  Glycine betaine aldehyde dehydrogenase from Bacillus subtilis: characterization of an enzyme required for the synthesis of the osmoprotectant glycine betaine , 1997, Archives of Microbiology.

[4]  E. Bremer,et al.  Ectoine functions as an osmoprotectant in Bacillus subtilis and is accumulated via the ABC-transport system OpuC , 1997 .

[5]  E. Bremer,et al.  Osmostress response in Bacillus subtilis: characterization of a proline uptake system (OpuE) regulated by high osmolarity and the alternative transcription factor sigma B , 1997, Molecular microbiology.

[6]  R. Krämer,et al.  Efflux of compatible solutes in Corynebacterium glutamicum mediated by osmoregulated channel activity. , 1997, European journal of biochemistry.

[7]  L. T. Smith,et al.  Molecular characterization of the bet genes encoding glycine betaine synthesis in Sinorhizobium meliloti 102F34. , 1997, Microbiology.

[8]  A. Hanson,et al.  Choline monooxygenase, an unusual iron-sulfur enzyme catalyzing the first step of glycine betaine synthesis in plants: prosthetic group characterization and cDNA cloning. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[9]  H. Kleber,et al.  Bacterial carnitine metabolism. , 1997, FEMS microbiology letters.

[10]  Z. Peng,et al.  Reciprocal regulation of Δ1-pyrroline-5-carboxylate synthetase and proline dehydrogenase genes controls proline levels during and after osmotic stress in plants , 1996, Molecular and General Genetics MGG.

[11]  C. Kang,et al.  Opposing pairs of serine protein kinases and phosphatases transmit signals of environmental stress to activate a bacterial transcription factor. , 1996, Genes & Development.

[12]  A. Burkovski,et al.  Isolation, characterization, and expression of the Corynebacterium glutamicum betP gene, encoding the transport system for the compatible solute glycine betaine , 1996, Journal of bacteriology.

[13]  E. Bremer,et al.  Three transport systems for the osmoprotectant glycine betaine operate in Bacillus subtilis: characterization of OpuD , 1996, Journal of bacteriology.

[14]  J. Boch,et al.  Synthesis of the osmoprotectant glycine betaine in Bacillus subtilis: characterization of the gbsAB genes , 1996, Journal of bacteriology.

[15]  J. Gowrishankar,et al.  How is osmotic regulation of transcription of the Escherichia coli proU operon achieved? , 1996, Genetica.

[16]  B. Poolman,et al.  Glycine Betaine Fluxes in Lactobacillus plantarum during Osmostasis and Hyper- and Hypo-osmotic Shock (*) , 1996, The Journal of Biological Chemistry.

[17]  M H Deverell,et al.  THREE‐DIMENSIONAL RECONSTRUCTION OF BENIGN LYMPHOID AGGREGATES IN BONE MARROW TREPHINES , 1996, The Journal of pathology.

[18]  M. Hecker,et al.  Heat‐shock and general stress response in Bacillus subtilis , 1996, Molecular microbiology.

[19]  L. Wu,et al.  Characterization of the Erwinia chrysanthemi osmoprotectant transporter gene ousA , 1996, Journal of bacteriology.

[20]  J. Hansen,et al.  Characterization of a chimeric proU operon in a subtilin-producing mutant of Bacillus subtilis 168 , 1995, Journal of bacteriology.

[21]  B. L. Taylor,et al.  Amino acid efflux in response to chemotactic and osmotic signals in Bacillus subtilis , 1995, Journal of bacteriology.

[22]  E. Bremer,et al.  OpuA, an Osmotically Regulated Binding Protein-dependent Transport System for the Osmoprotectant Glycine Betaine in Bacillus subtilis(*) , 1995, The Journal of Biological Chemistry.

[23]  E. Bremer,et al.  The osmoprotectant proline betaine is a major substrate for the binding-protein-dependent transport system ProU of Escherichia coli K-12 , 1995, Molecular and General Genetics MGG.

[24]  M. Potts Desiccation tolerance of prokaryotes , 1994, Microbiological reviews.

[25]  H. G. Trüper,et al.  Microbial behaviour in salt‐stressed ecosystems , 1994 .

[26]  J. Boch,et al.  Osmoregulation in Bacillus subtilis: synthesis of the osmoprotectant glycine betaine from exogenously provided choline , 1994, Journal of bacteriology.

[27]  E. Bremer,et al.  Adaptation of Escherichia coli to high osmolarity environments: osmoregulation of the high-affinity glycine betaine transport system proU. , 1994, FEMS microbiology reviews.

[28]  C. Price,et al.  Stress-induced activation of the sigma B transcription factor of Bacillus subtilis , 1993, Journal of bacteriology.

[29]  T. Lamark,et al.  DNA sequence and analysis of the bet genes encoding the osmoregulatory choline—glycine betaine pathway of Escherichia coli , 1991, Molecular microbiology.

[30]  G. Selvaraj,et al.  Choline oxidase, a catabolic enzyme in Arthrobacter pascens, facilitates adaptation to osmotic stress in Escherichia coli , 1991, Journal of bacteriology.

[31]  R. Reed,et al.  Determination of turgor pressure in Bacillus subtilis: a possible role for K+ in turgor regulation. , 1990, Journal of general microbiology.

[32]  J A Chudek,et al.  The effects of osmotic upshock on the intracellular solute pools of Bacillus subtilis. , 1990, Journal of general microbiology.

[33]  M. Zoratti,et al.  Stretch-activated composite ion channels in Bacillus subtilis. , 1990, Biochemical and biophysical research communications.

[34]  L N Csonka,et al.  Physiological and genetic responses of bacteria to osmotic stress. , 1989, Microbiological reviews.

[35]  J. M. Wood Proline porters effect the utilization of proline as nutrient or osmoprotectant for bacteria , 1988, The Journal of Membrane Biology.

[36]  A. Dandekar,et al.  A single base pair change in proline biosynthesis genes causes osmotic stress tolerance , 1988, Journal of bacteriology.

[37]  D. le Rudulier,et al.  Nitrogen fixation in Klebsiella pneumoniae during osmotic stress. Effect of exogenous proline or a proline overproducing plasmid. , 1982, Biochimica et biophysica acta.

[38]  M. Adaptation of Escherichia coli to high osmolarity environments : Osmoregulation of the high-affinity glycine betaine transport system ProU , 2002 .

[39]  J. Bernhardt,et al.  First steps from a two‐dimensional protein index towards a response‐regulation map for Bacillus subtilis , 1997, Electrophoresis.

[40]  A. Blomberg Osmoresponsive proteins and functional assessment strategies in Saccharomyces cerevisiae , 1997, Electrophoresis.

[41]  D. Kültz,et al.  Regulation of gene expression by hypertonicity. , 1997, Annual review of physiology.

[42]  J. M. Wood,et al.  Osmoadaptation by rhizosphere bacteria. , 1996, Annual review of microbiology.

[43]  C. Ura,et al.  Characterization of theErwinia chrysanthemiOsmoprotectant Transporter GeneousA , 1996 .

[44]  A. Hanson,et al.  Quaternary Ammonium and Tertiary Sulfonium Compounds in Higher Plants , 1993 .

[45]  A. Hanson,et al.  Prokaryotic osmoregulation: genetics and physiology. , 1991, Annual review of microbiology.

[46]  W. Stewart Nitrogen Fixation in Plants , 1966 .