Numerical Model Construction with Closed Observables
暂无分享,去创建一个
[1] E. Weinan. Principles of Multiscale Modeling , 2011 .
[2] John Harlim,et al. Forecasting turbulent modes with nonparametric diffusion models: Learning from noisy data , 2015, 1501.06848.
[3] N. Nguyen,et al. An ‘empirical interpolation’ method: application to efficient reduced-basis discretization of partial differential equations , 2004 .
[4] Andreas S. Weigend,et al. Time Series Prediction: Forecasting the Future and Understanding the Past , 1994 .
[5] Ronald R. Coifman,et al. Diffusion Maps, Reduction Coordinates, and Low Dimensional Representation of Stochastic Systems , 2008, Multiscale Model. Simul..
[6] A. Stuart,et al. Extracting macroscopic dynamics: model problems and algorithms , 2004 .
[7] F. Takens. Detecting strange attractors in turbulence , 1981 .
[8] I. Kevrekidis,et al. Equation-free/Galerkin-free POD-assisted computation of incompressible flows , 2005 .
[9] Benjamin Peherstorfer,et al. Localized Discrete Empirical Interpolation Method , 2014, SIAM J. Sci. Comput..
[10] D. Broomhead,et al. Embedding theorems for non-uniformly sampled dynamical systems , 2007 .
[11] Nicholas Kevlahan,et al. Principles of Multiscale Modeling , 2012 .
[12] Neil Fenichel. Persistence and Smoothness of Invariant Manifolds for Flows , 1971 .
[13] Stéphane Lafon,et al. Diffusion maps , 2006 .
[14] Nicolas Le Roux,et al. Out-of-Sample Extensions for LLE, Isomap, MDS, Eigenmaps, and Spectral Clustering , 2003, NIPS.
[15] Amit Singer,et al. Detecting intrinsic slow variables in stochastic dynamical systems by anisotropic diffusion maps , 2009, Proceedings of the National Academy of Sciences.
[16] Chi K. Tse,et al. Optimal embedding parameters: a modelling paradigm , 2004 .
[17] Felix Dietrich,et al. Gradient navigation model for pedestrian dynamics. , 2014, Physical review. E, Statistical, nonlinear, and soft matter physics.
[18] F. Takens,et al. On the nature of turbulence , 1971 .
[19] J.W. Bandler,et al. Space mapping: the state of the art , 2004, IEEE Transactions on Microwave Theory and Techniques.
[20] Timothy D. Sauer,et al. Time-Scale Separation from Diffusion-Mapped Delay Coordinates , 2013, SIAM J. Appl. Dyn. Syst..
[21] H. Bungartz,et al. Sparse grids , 2004, Acta Numerica.
[22] D. Giannakis,et al. Nonparametric forecasting of low-dimensional dynamical systems. , 2014, Physical review. E, Statistical, nonlinear, and soft matter physics.
[23] Achi Brandt,et al. Bootstrap AMG , 2011, SIAM J. Sci. Comput..
[24] D. Broomhead,et al. Takens embedding theorems for forced and stochastic systems , 1997 .
[25] Ulrich Weidmann,et al. Transporttechnik der Fussgänger , 1992 .
[26] D. Giannakis. Data-driven spectral decomposition and forecasting of ergodic dynamical systems , 2015, Applied and Computational Harmonic Analysis.
[27] E Weinan,et al. The Heterognous Multiscale Methods , 2003 .
[28] B. Nadler,et al. Diffusion maps, spectral clustering and reaction coordinates of dynamical systems , 2005, math/0503445.
[29] B. Moore. Principal component analysis in linear systems: Controllability, observability, and model reduction , 1981 .
[30] Yakov Pesin,et al. The Multiplicative Ergodic Theorem , 2013 .
[31] Karen Willcox,et al. Parameter and State Model Reduction for Large-Scale Statistical Inverse Problems , 2010, SIAM J. Sci. Comput..
[32] Giovanni Samaey,et al. Equation-free multiscale computation: algorithms and applications. , 2009, Annual review of physical chemistry.
[33] Kazuyuki Aihara,et al. Modeling dynamics from only output data. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.
[34] G. Sugihara,et al. Generalized Theorems for Nonlinear State Space Reconstruction , 2011, PloS one.