Entropy of Shortest Distance (ESD) as Pore Detector and Pore-Shape Classifier

The entropy of shortest distance (ESD) between geographic elements (“elliptical intrusions”, “lineaments”, “points”) on a map, or between "vugs", "fractures" and "pores" in the macro- or microscopic images of triple porosity naturally fractured vuggy carbonates provides a powerful new tool for the digital processing, analysis, classification and space/time distribution prognostic of mineral resources as well as the void space in carbonates, and in other rocks. The procedure is applicable at all scales, from outcrop photos, FMI, UBI, USI (geophysical imaging techniques) to micrographs, as we shall illustrate through some examples. Out of the possible applications of the ESD concept, we discuss in details the sliding window entropy filtering for nonlinear pore boundary enhancement, and propose this procedure as unbiased thresholding technique.

[1]  G. V. Steeg Non-parametric Entropy Estimation Toolbox (NPEET) , 2014 .

[2]  P. J. Clark,et al.  Distance to Nearest Neighbor as a Measure of Spatial Relationships in Populations , 1954 .

[3]  F. Frances Yao,et al.  Computational Geometry , 1991, Handbook of Theoretical Computer Science, Volume A: Algorithms and Complexity.

[4]  G. Korvin,et al.  Shale compaction and statistical physics , 1984 .

[5]  Gabor Korvin The Value of Information in the Interactive, Integrative and Evolutionary World Model: A Case History , 2000 .

[6]  J McCarthy,et al.  MEASURES OF THE VALUE OF INFORMATION. , 1956, Proceedings of the National Academy of Sciences of the United States of America.

[7]  Vijay P. Singh,et al.  Hydrologic Synthesis Using Entropy Theory: Review , 2011 .

[8]  J. Aczel,et al.  On Measures of Information and Their Characterizations , 2012 .

[9]  Světlana Tomiczková AREA OF THE MINKOWSKI SUM OF TWO CONVEX SETS , 2005 .

[10]  Mark de Berg,et al.  Computational geometry: algorithms and applications , 1997 .

[11]  Wojciech Szatzschneider,et al.  An Inequality , 1991, SIAM Rev..

[12]  P. Hertz,et al.  Über den gegenseitigen durchschnittlichen Abstand von Punkten, die mit bekannter mittlerer Dichte im Raume angeordnet sind , 1909 .

[13]  P. Fischer On the inequality Σpif(pi)≥ pif(qi) , 1972 .

[14]  E. M. Lifshitz,et al.  Statistical physics. Pt.1 , 1969 .

[15]  Boris Sterligov,et al.  Analyse probabiliste des relations spatiales entre les gisements aurifères et les structures crustales : developpement méthodologique et applications à l'Yenissei Ridge (Russie) , 2010 .

[16]  L. Györfi,et al.  Nonparametric entropy estimation. An overview , 1997 .

[17]  G. Bonham-Carter Statistical Association of Gold Occurrences with Landsat-Derived Lineaments, Timmins-Kirkland Lake Area, Ontario , 1985 .

[18]  Thomas J. Mack,et al.  Lineament analysis of mineral areas of interest in Afghanistan , 2012 .

[19]  W. B. Gallie,et al.  Uncertainty and Business Decisions. , 1954 .

[20]  M. Berman Distance distributions associated with poisson processes of geometric figures , 1977, Journal of Applied Probability.

[21]  D. Thouless,et al.  Models of Disorder: The Theoretical Physics of Homogeneously Disordered Systems , 1979 .

[22]  John Ziman,et al.  Models of disorder , 1979 .

[23]  G. Bonham-Carter Geographic Information Systems for Geoscientists , 1996 .

[24]  A. Rencz,et al.  Remote sensing for the earth sciences , 1999 .

[25]  Benjamín Figueroa-Sandoval,et al.  Agroecometry: a toolbox for the design of virtual agriculture , 2004 .

[26]  E. M. Lifshitz,et al.  Statistical physics. Pt.1, Pt.2 , 1980 .

[27]  OLESCHKO Klaudia,et al.  Entropy based triangle for designing sustainable soil management , 2004 .

[28]  A. N. Rencz,et al.  Remote sensing for the earth sciences: manual of remote sensing Volume 3. , 1999 .