Genetic local search with distance preserving recombination operator for a vehicle routing problem

Abstract The paper describes a systematic adaptation of the genetic local search algorithm to a real life vehicle routing problem. The proposition is motivated by successful implementations of genetic local search-based heuristics for a number of combinatorial optimization problems. The key element of the proposed approach is the use of global convexity tests. The tests allow finding the types of solution features that are essential for solution quality. The results of the tests are used to construct an appropriate distance preserving recombination operator. Results of computational experiments demonstrating the efficiency of the proposed approach are reported.

[1]  É. Taillard COMPARISON OF ITERATIVE SEARCHES FOR THE QUADRATIC ASSIGNMENT PROBLEM. , 1995 .

[2]  B. Freisleben,et al.  Genetic local search for the TSP: new results , 1997, Proceedings of 1997 IEEE International Conference on Evolutionary Computation (ICEC '97).

[3]  Stéphane Dauzère-Pérès,et al.  Genetic algorithms to minimize the weighted number of late jobs on a single machine , 2003, Eur. J. Oper. Res..

[4]  James Kennedy,et al.  Proceedings of the 1998 IEEE International Conference on Evolutionary Computation [Book Review] , 1999, IEEE Transactions on Evolutionary Computation.

[5]  David H. Wolpert,et al.  No free lunch theorems for optimization , 1997, IEEE Trans. Evol. Comput..

[6]  Jin-Kao Hao,et al.  Hybrid Evolutionary Algorithms for Graph Coloring , 1999, J. Comb. Optim..

[7]  D. Ackley A connectionist machine for genetic hillclimbing , 1987 .

[8]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[9]  Bernd Freisleben,et al.  Fitness landscape analysis and memetic algorithms for the quadratic assignment problem , 2000, IEEE Trans. Evol. Comput..

[10]  Andrzej Jaszkiewicz,et al.  Genetic local search for multi-objective combinatorial optimization , 2022 .

[11]  Zbigniew Michalewicz,et al.  Genetic Algorithms + Data Structures = Evolution Programs , 1996, Springer Berlin Heidelberg.

[12]  Brian W. Kernighan,et al.  An Effective Heuristic Algorithm for the Traveling-Salesman Problem , 1973, Oper. Res..

[13]  Samy Bengio,et al.  The Vehicle Routing Problem with Time Windows Part II: Genetic Search , 1996, INFORMS J. Comput..

[14]  Heinz Mühlenbein,et al.  Evolution in Time and Space - The Parallel Genetic Algorithm , 1990, FOGA.

[15]  Andrew B. Kahng,et al.  A new adaptive multi-start technique for combinatorial global optimizations , 1994, Oper. Res. Lett..

[16]  Patrick D. Surry,et al.  Formal Memetic Algorithms , 1994, Evolutionary Computing, AISB Workshop.

[17]  Terry Jones,et al.  Fitness Distance Correlation as a Measure of Problem Difficulty for Genetic Algorithms , 1995, ICGA.

[18]  F. Glover Scatter search and star-paths: beyond the genetic metaphor , 1995 .

[19]  F. Glover HEURISTICS FOR INTEGER PROGRAMMING USING SURROGATE CONSTRAINTS , 1977 .