A satellite-based geographically weighted regression model for regional PM2.5 estimation over the Pearl River Delta region in China

[1]  Nektarios Chrysoulakis,et al.  Estimation of urban PM10 concentration, based on MODIS and MERIS/AATSR synergistic observations , 2013 .

[2]  M. G. Estes,et al.  Estimating ground-level PM(2.5) concentrations in the southeastern U.S. using geographically weighted regression. , 2013, Environmental research.

[3]  M. Hashim,et al.  A robust calibration approach for PM 10 prediction from MODIS aerosol optical depth , 2012 .

[4]  Jiahua Zhang,et al.  Synergy of satellite and ground based observations in estimation of particulate matter in eastern China. , 2012, The Science of the total environment.

[5]  T. Maggos,et al.  The role of meteorology on different sized aerosol fractions (PM₁₀, PM₂.₅, PM₂.₅-₁₀). , 2012, The Science of the total environment.

[6]  J. Schwartz,et al.  A novel calibration approach of MODIS AOD data to predict PM2.5 concentrations , 2011 .

[7]  J. Moon,et al.  The analysis of PM2.5 and associated elements and their indoor/outdoor pollution status in an urban area. , 2011, Indoor air.

[8]  T. Eck,et al.  Global evaluation of the Collection 5 MODIS dark-target aerosol products over land , 2010 .

[9]  A. Stewart Fotheringham,et al.  Geographically Weighted Regression: A Method for Exploring Spatial Nonstationarity , 2010 .

[10]  Yonghui Yang,et al.  Application of geographically weighted regression in estimating the effect of climate and site conditions on vegetation distribution in Haihe Catchment, China , 2010, Plant Ecology.

[11]  M. Brauer,et al.  Global Estimates of Ambient Fine Particulate Matter Concentrations from Satellite-Based Aerosol Optical Depth: Development and Application , 2010, Environmental health perspectives.

[12]  Jie Tian,et al.  A semi-empirical model for predicting hourly ground-level fine particulate matter (PM2.5) concentration in southern Ontario from satellite remote sensing and ground-based meteorological measurements , 2010 .

[13]  Ying Zhang,et al.  Satellite-based estimation of regional particulate matter (PM) in Beijing using vertical-and-RH correcting method , 2010 .

[14]  Jie Guang,et al.  Correlation between PM concentrations and aerosol optical depth in eastern China , 2009 .

[15]  P. Gupta,et al.  Particulate Matter Air Quality Assessment using Integrated Surface, Satellite, and Meteorological Products , 2009 .

[16]  Yang Liu,et al.  Estimating Regional Spatial and Temporal Variability of PM2.5 Concentrations Using Satellite Data, Meteorology, and Land Use Information , 2009, Environmental health perspectives.

[17]  Rajasekhar Balasubramanian,et al.  Chemical characteristics of fine particles emitted from different gas cooking methods , 2008 .

[18]  Yang Liu,et al.  Spatiotemporal associations between GOES aerosol optical depth retrievals and ground-level PM2.5. , 2008, Environmental science & technology.

[19]  R. Santer,et al.  Atmospheric particulate matter (PM) estimation from SeaWiFS imagery , 2007 .

[20]  John P. Dawson,et al.  Sensitivity of PM 2.5 to climate in the Eastern US: a modeling case study , 2007 .

[21]  E. Vermote,et al.  Second‐generation operational algorithm: Retrieval of aerosol properties over land from inversion of Moderate Resolution Imaging Spectroradiometer spectral reflectance , 2007 .

[22]  Naresh Kumar,et al.  An empirical relationship between PM(2.5) and aerosol optical depth in Delhi Metropolitan. , 2007, Atmospheric environment.

[23]  Bruno Pelletier,et al.  Retrieving of particulate matter from optical measurements: A semiparametric approach , 2007 .

[24]  Yang Liu,et al.  Using aerosol optical thickness to predict ground-level PM2.5 concentrations in the St. Louis area: A comparison between MISR and MODIS , 2007 .

[25]  R. Martin,et al.  Estimating ground-level PM 2.5 using aerosol optical depth determined from satellite remot , 2006 .

[26]  R. Koelemeijer,et al.  Comparison of spatial and temporal variations of aerosol optical thickness and particulate matter over Europe , 2006 .

[27]  Jun Wang,et al.  Satellite remote sensing of particulate matter and air quality assessment over global cities , 2006 .

[28]  A. Skidmore,et al.  Comparing accuracy assessments to infer superiority of image classification methods , 2006 .

[29]  Aisheng Wu,et al.  Terra and Aqua MODIS calibration algorithms and uncertainty analysis , 2005, SPIE Remote Sensing.

[30]  E. Vermote,et al.  The MODIS Aerosol Algorithm, Products, and Validation , 2005 .

[31]  D. Jacob,et al.  Estimating ground-level PM2.5 in the eastern United States using satellite remote sensing. , 2005, Environmental science & technology.

[32]  Basil W. Coutant,et al.  Qualitative and quantitative evaluation of MODIS satellite sensor data for regional and urban scale air quality , 2004 .

[33]  Jun Wang,et al.  Intercomparison between satellite‐derived aerosol optical thickness and PM2.5 mass: Implications for air quality studies , 2003 .

[34]  O. Boucher,et al.  A satellite view of aerosols in the climate system , 2002, Nature.

[35]  B. Holben,et al.  Validation of MODIS aerosol optical depth retrieval over land , 2002 .

[36]  Martin Charlton,et al.  The Geography of Parameter Space: An Investigation of Spatial Non-Stationarity , 1996, Int. J. Geogr. Inf. Sci..

[37]  Alexis K.H. Lau,et al.  Application of Retrieved High-resolution AOD in Regional PM Monitoring in the Pearl River Delta and Hong Kong Region , 2011 .

[38]  S. K. Bhargava,et al.  Fine Particles (PM2.5) in Residential Areas of Lucknow City and Factors Influencing the Concentration , 2008 .

[39]  G. Leeuw,et al.  Exploring the relation between aerosol optical depth and PM 2.5 at Cabauw, the Netherlands , 2008 .

[40]  Li Cheng,et al.  Remote Sensing of High Spatial Resolution Aerosol Optical Depth with MODIS Data over Hong Kong , 2005 .