Author ' s personal copy Fuzzy uncertainty modeling for grid based localization of mobile robots

This paper presents a localization method using fuzzy logic to represent the different facets of uncertainty present in sensor data. Our method follows the typical predict-update cycle of recursive state estimators to estimate the robot's location. The method is implemented on a fuzzy position grid, and several simplifications are introduced to reduce computational complexity. The main advantages of this fuzzy logic method compared to most current ones are: (i) only an approximate sensor model is required, (ii) several facets of location uncertainty can be represented, and (iii) ambiguities in the sensor information are directly represented, thus avoiding having to solve the data association problem separately. Our method has been validated experimentally on two different platforms, a legged robot equipped with vision and a wheeled robot equipped with range sensors. The experiments show that our method can solve both the tracking and the global localization problem. They also show that this method can successfully cope with ambiguous observations, when several features may be associated to the same observation, and with robot kidnapping situations. Additional experiments are presented that compare our approach with a state-of-the-art probabilistic method.

[1]  Panos E. Trahanias,et al.  A Hybrid Framework for Mobile Robot Localization: Formulation Using Switching State-Space Models , 2003, Auton. Robots.

[2]  Marilena Vendittelli,et al.  Real-time map building and navigation for autonomous robots in unknown environments , 1998, IEEE Trans. Syst. Man Cybern. Part B.

[3]  L. Zadeh Fuzzy sets as a basis for a theory of possibility , 1999 .

[4]  Dieter Fox,et al.  An experimental comparison of localization methods continued , 2002, IEEE/RSJ International Conference on Intelligent Robots and Systems.

[5]  Isabelle Bloch Information combination operators for data fusion: a comparative review with classification , 1996, IEEE Trans. Syst. Man Cybern. Part A.

[6]  Salem Benferhat,et al.  Reasoning with multiple-source information in a possibilistic logic framework , 2006, Inf. Fusion.

[7]  Gerhard Lakemeyer,et al.  RoboCup 2006: Robot Soccer World Cup X , 2006, RoboCup.

[8]  Kazuo Tanaka,et al.  Stability analysis and design of fuzzy control systems , 1992 .

[9]  Jorge Gasós,et al.  Uncertainty representation for mobile robots: Perception, modeling and navigation in unknown environments , 1999, Fuzzy Sets Syst..

[10]  Alessandro Saffiotti,et al.  Fuzzy landmark-based localization for a legged robot , 2000, Proceedings. 2000 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2000) (Cat. No.00CH37113).

[11]  Alessandro Saffiotti,et al.  Robust Multi-robot Object Localization Using Fuzzy Logic , 2004, RoboCup.

[12]  Simon J. Godsill,et al.  On sequential Monte Carlo sampling methods for Bayesian filtering , 2000, Stat. Comput..

[13]  H. Levent Akin,et al.  A Collaborative Multi-robot Localization Method without Robot Identification , 2009, RoboCup.

[14]  Isabelle Bloch,et al.  Fuzzy mathematical morphologies: A comparative study , 1995, Pattern Recognit..

[15]  Hobart R. Everett,et al.  Mobile robot positioning: Sensors and techniques , 1997, J. Field Robotics.

[16]  Kazuo Tanaka,et al.  Trajectory stabilization of a model car via fuzzy control , 1995 .

[17]  Honghai Liu,et al.  Qualitative kinematics of planar robots: Intelligent connection , 2007, Int. J. Approx. Reason..

[18]  Alessandro Saffiotti,et al.  The uses of fuzzy logic in autonomous robot navigation , 1997, Soft Comput..

[19]  Alessandro Saffiotti,et al.  A Multivalued Logic Approach to Integrating Planning and Control , 1995, Artif. Intell..

[20]  Wolfram Burgard,et al.  Robust Monte Carlo localization for mobile robots , 2001, Artif. Intell..

[21]  George K. I. Mann,et al.  Integrated fuzzy logic and genetic algorithmic approach for simultaneous localization and mapping of mobile robots , 2008, Appl. Soft Comput..

[22]  Richard O. Duda,et al.  Pattern classification and scene analysis , 1974, A Wiley-Interscience publication.

[23]  Alessandro Saffiotti,et al.  Integrating Fuzzy Geometric Maps and Topological Maps for Robot Navigation , 1999, IIA/SOCO.

[24]  D. Herrero-Pérez,et al.  Robust and Efficient Field Features Detection for Localization , 2006 .

[25]  Isabelle Bloch,et al.  Duality vs. adjunction for fuzzy mathematical morphology and general form of fuzzy erosions and dilations , 2009, Fuzzy Sets Syst..

[26]  Ronald R. Yager,et al.  On a hierarchical structure for fuzzy modeling and control , 1993, IEEE Trans. Syst. Man Cybern..

[27]  Patrick Brézillon,et al.  Lecture Notes in Artificial Intelligence , 1999 .

[28]  Pedro U. Lima,et al.  Multi-robot cooperative object localization: decentralized Bayesian approach , 2010 .

[29]  Paul Vernaza,et al.  The University of Pennsylvania Robocup 2004 Legged Soccer Team , 2005 .

[30]  Alejandro Martín,et al.  A fuzzy approach to build sonar maps for mobile robots , 1996 .

[31]  Arthur Gelb,et al.  Applied Optimal Estimation , 1974 .

[32]  Hatice Kose-Bagci,et al.  A Fuzzy Touch to R-MCL Localization Algorithm , 2005, RoboCup.

[33]  Alessandro Saffiotti,et al.  Multirobot Object Localization: A Fuzzy Fusion Approach , 2009, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[34]  Honghai Liu,et al.  Fuzzy Qualitative Trigonometry , 2005, 2005 IEEE International Conference on Systems, Man and Cybernetics.

[35]  Wolfram Burgard,et al.  Estimating the Absolute Position of a Mobile Robot Using Position Probability Grids , 1996, AAAI/IAAI, Vol. 2.

[36]  G. Matheron Éléments pour une théorie des milieux poreux , 1967 .

[37]  Mohammad Molhim,et al.  Fuzzy dynamic localization for mobile robots , 2004, Fuzzy Sets Syst..

[38]  T. Mexia,et al.  Author ' s personal copy , 2009 .

[39]  Andrea Bonarini,et al.  Concepts and Fuzzy Models for Behavior-Based Robotics , 2003, WILF.

[40]  Isabelle Bloch,et al.  Why robots should use fuzzy mathematical morphology , 2002 .

[41]  Liu Dsosu,et al.  Fuzzy random measure and its extension theorem , 1983 .

[42]  Alessandro Saffiotti,et al.  Fuzzy Self-Localization Using Natural Features in the Four-Legged League , 2004, RoboCup.

[43]  Hugh F. Durrant-Whyte,et al.  Mobile robot localization by tracking geometric beacons , 1991, IEEE Trans. Robotics Autom..

[44]  Trevor P. Martin,et al.  Fuzzy Logic in Artificial Intelligence Towards Intelligent Systems , 1995, Lecture Notes in Computer Science.

[45]  Hatice Kose-Bagci,et al.  The Reverse Monte Carlo localization algorithm , 2007, Robotics Auton. Syst..

[46]  S. Weber A general concept of fuzzy connectives, negations and implications based on t-norms and t-conorms , 1983 .

[47]  Dieter Fox,et al.  Bayesian Filtering for Location Estimation , 2003, IEEE Pervasive Comput..

[48]  W. Burgard,et al.  Markov Localization for Mobile Robots in Dynamic Environments , 1999, J. Artif. Intell. Res..

[49]  Wolfram Burgard,et al.  An experimental comparison of localization methods , 1998, Proceedings. 1998 IEEE/RSJ International Conference on Intelligent Robots and Systems. Innovations in Theory, Practice and Applications (Cat. No.98CH36190).

[50]  Hatice Kose,et al.  Comparison of Localization Methods for a Robot Soccer Team , 2006 .

[51]  Sauro Longhi,et al.  Development and experimental validation of an adaptive extended Kalman filter for the localization of mobile robots , 1999, IEEE Trans. Robotics Autom..

[52]  Alessandro Saffiotti,et al.  Perception-Based Self-Localization Using Fuzzy Locations , 1995, Reasoning with Uncertainty in Robotics.

[53]  Jean Serra,et al.  Image Analysis and Mathematical Morphology , 1983 .

[54]  Ching-Chih Tsai,et al.  Improved global localization of an indoor mobile robot via fuzzy extended information filtering , 2008, Robotica.

[55]  Alejandro Martín,et al.  Mobile Robot Localization Using Fuzzy Maps , 1995, Fuzzy Logic in Artificial Intelligence.