Ultrametric pseudodifferential operators and wavelets for the case of non homogeneous measure
暂无分享,去创建一个
[1] J. Benedetto,et al. A wavelet theory for local fields and related groups , 2003, math/0312036.
[2] V. A. Avetisov,et al. Application of p-adic analysis to models of spontaneous breaking of the replica symmetry , 2008 .
[3] S. Fomin,et al. Elements of the Theory of Functions and Functional Analysis , 1961 .
[4] S. V. Kozyrev,et al. p-Adic Pseudodifferential Operators and p-Adic Wavelets , 2003, math-ph/0303045.
[5] Andrei Khrennikov,et al. Non-Archimedean Analysis: Quantum Paradoxes, Dynamical Systems and Biological Models , 2011 .
[6] A. Khrennikov,et al. Pseudodifferential operators on ultrametric spaces and ultrametric wavelets , 2004 .
[7] Nondegenerate ultrametric diffusion , 2004, cond-mat/0403440.
[8] Anatoly N. Kochubei,et al. Pseudo-differential equations and stochastics over non-archimedean fields , 2001 .
[9] Robert L. Benedetto. Examples of wavelets for local fields , 2003 .
[10] S. V. Kozyrev,et al. Application of p-adic analysis to models of breaking of replica symmetry , 1999 .
[11] Sergei Kozyrev,et al. Wavelet analysis as a p-adic spectral analysis , 2008 .
[12] Igor Volovich,et al. p-adic string , 1987 .
[13] V A Avetisov,et al. p-adic models of ultrametric diffusion constrained by hierarchical energy landscapes , 2002 .