A Hybrid Harmony search and Simulated Annealing algorithm for continuous optimization

Abstract Harmony search is a powerful metaheuristic algorithm with excellent exploitation capabilities but suffers a very serious limitation of premature convergence if one or more initially generated solutions/harmonies are in the vicinity of local optimal. In order to remove this limitation this paper proposes a novel algorithm based on hybridization of Harmony search and Simulated Annealing called HS-SA to inherit their advantages in a complementary way. Taking the inspiration from Simulated Annealing the proposed HS-SA algorithm accepts even the inferior harmonies with a probability determined by parameter called Temperature. The Temperature parameter is initially kept high to favor exploration of search space and is linearly decreased to gradually shift focus to exploitation of promising search areas. The performance of HS-SA is tested on IEEE CEC 2014 benchmark functions and real life problem from computer vision called Camera Calibration problem. The numerical results demonstrate the superiority of the proposed algorithm.

[1]  Nima Taherinejad,et al.  Highly reliable harmony search algorithm , 2009, 2009 European Conference on Circuit Theory and Design.

[2]  Xin-She Yang Harmony Search as a Metaheuristic Algorithm , 2009 .

[3]  Jing J. Liang,et al.  A self-adaptive global best harmony search algorithm for continuous optimization problems , 2010, Appl. Math. Comput..

[4]  Xin-She Yang,et al.  Cuckoo Search via Lévy flights , 2009, 2009 World Congress on Nature & Biologically Inspired Computing (NaBIC).

[5]  Kusum Deep,et al.  STEREO CAMERA CALIBRATION USING PARTICLE SWARM OPTIMIZATION , 2013, Appl. Artif. Intell..

[6]  Christian Blum,et al.  Hybrid Metaheuristics: An Introduction , 2008, Hybrid Metaheuristics.

[7]  M. Fesanghary,et al.  An improved harmony search algorithm for solving optimization problems , 2007, Appl. Math. Comput..

[8]  M. Mahdavi,et al.  ARTICLE IN PRESS Available online at www.sciencedirect.com , 2007 .

[9]  Mahamed G. H. Omran,et al.  Global-best harmony search , 2008, Appl. Math. Comput..

[10]  Liang Gao,et al.  An effective teaching-learning-based cuckoo search algorithm for parameter optimization problems in structure designing and machining processes , 2015, Appl. Soft Comput..

[11]  Ponnuthurai Nagaratnam Suganthan,et al.  Problem Definitions and Evaluation Criteria for the CEC 2014 Special Session and Competition on Single Objective Real-Parameter Numerical Optimization , 2014 .

[12]  Jason Sheng-Hong Tsai,et al.  Improving Differential Evolution With a Successful-Parent-Selecting Framework , 2015, IEEE Transactions on Evolutionary Computation.

[13]  Kenneth Morgan,et al.  Modified cuckoo search: A new gradient free optimisation algorithm , 2011 .

[14]  Zong Woo Geem,et al.  Metaheuristics in structural optimization and discussions on harmony search algorithm , 2016, Swarm Evol. Comput..

[15]  Jun Zhang,et al.  Adaptive Particle Swarm Optimization , 2008, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[16]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[17]  Jing Sun,et al.  Analyzing and Improving of Neural Networks used in Stereo Calibration , 2007, Third International Conference on Natural Computation (ICNC 2007).

[18]  N. Sukavanam,et al.  Stereo camera calibration using real coded genetic algorithm , 2008, TENCON 2008 - 2008 IEEE Region 10 Conference.

[19]  Zhao Xinchao,et al.  Simulated annealing algorithm with adaptive neighborhood , 2011 .

[20]  Scott Kirkpatrick,et al.  Optimization by Simmulated Annealing , 1983, Sci..

[21]  Petros Koumoutsakos,et al.  Reducing the Time Complexity of the Derandomized Evolution Strategy with Covariance Matrix Adaptation (CMA-ES) , 2003, Evolutionary Computation.

[22]  Erik Valdemar Cuevas Jiménez,et al.  A swarm optimization algorithm inspired in the behavior of the social-spider , 2013, Expert Syst. Appl..

[23]  Zong Woo Geem,et al.  A survey on applications of the harmony search algorithm , 2013, Eng. Appl. Artif. Intell..

[24]  Y. M. Cheng,et al.  An improved harmony search minimization algorithm using different slip surface generation methods for slope stability analysis , 2008 .

[25]  W. Faig CALIBRATION OF CLOSE-RANGE PHOTOGRAMMETRIC SYSTEMS: MATHEMATICAL FORMULATION , 1975 .

[26]  Rajesh Kumar,et al.  An Intelligent Tuned Harmony Search algorithm for optimisation , 2012, Inf. Sci..

[27]  Kusum Deep,et al.  Applications of Harmony Search Algorithm in Data Mining: A Survey , 2015, SocProS.

[28]  Somnath Sengupta,et al.  Robust camera parameter estimation using genetic algorithm , 2001, Pattern Recognit. Lett..

[29]  Hossein Nezamabadi-pour,et al.  GSA: A Gravitational Search Algorithm , 2009, Inf. Sci..

[30]  Bijaya K. Panigrahi,et al.  Exploratory Power of the Harmony Search Algorithm: Analysis and Improvements for Global Numerical Optimization , 2011, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[31]  O. Hasançebi,et al.  Adaptive Harmony Search Algorithm for Design Code Optimization of Steel Structures , 2009 .

[32]  Min Xie,et al.  Particle swarm optimisation algorithm for non-linear camera calibration , 2012 .

[33]  Yilong Yin,et al.  Cuckoo search with varied scaling factor , 2015, Frontiers of Computer Science.

[34]  Mohammed El-Abd,et al.  An improved global-best harmony search algorithm , 2013, Appl. Math. Comput..

[35]  Xiang Wan,et al.  Camera parameters estimation and evaluation in active vision system , 1996, Pattern Recognit..

[36]  Min-Yuan Cheng,et al.  Symbiotic Organisms Search: A new metaheuristic optimization algorithm , 2014 .

[37]  Irwin Sobel,et al.  On Calibrating Computer Controlled Cameras for Perceiving 3-D Scenes , 1973, IJCAI.

[38]  Qiang Ji,et al.  Camera calibration with genetic algorithms , 2001, IEEE Trans. Syst. Man Cybern. Part A.

[39]  Carlos García-Martínez,et al.  A simulated annealing method based on a specialised evolutionary algorithm , 2012, Appl. Soft Comput..

[40]  Hisao Ishibuchi,et al.  Hybrid Evolutionary Algorithms , 2007 .

[41]  Xinhua Zhuang,et al.  Pose estimation from corresponding point data , 1989, IEEE Trans. Syst. Man Cybern..

[42]  Albert Y. Zomaya,et al.  Interweaving heterogeneous metaheuristics using harmony search , 2009, 2009 IEEE International Symposium on Parallel & Distributed Processing.

[43]  Paul R. Cohen,et al.  Camera Calibration with Distortion Models and Accuracy Evaluation , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[44]  Z. Geem Particle-swarm harmony search for water network design , 2009 .

[45]  Mandava Rajeswari,et al.  The variants of the harmony search algorithm: an overview , 2011, Artificial Intelligence Review.

[46]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[47]  Yin-Fu Huang,et al.  Self-adaptive harmony search algorithm for optimization , 2010, Expert Syst. Appl..

[48]  Zong Woo Geem,et al.  A New Heuristic Optimization Algorithm: Harmony Search , 2001, Simul..