Long-time Behavior of Solutions to Cubic Dirac Equation with Hartree Type Nonlinearity in ℝ1+2

In this paper we study the long-time behavior of solutions to the Dirac equation $$\begin{equation*} \big ( -i\gamma^\mu \partial_\mu + m \big) \psi= \left(V \ast ( \overline \psi \psi)\right) \psi \ \ \textrm{in } \ {\mathbb{R}}^{1+2},\end{equation*}$$where $V$ is the Yukawa potential in ${\mathbb{R}}^{2}$. It is proved that if $m>0$ and the initial data is small in $H^s({\mathbb{R}}^2)$ for $s>0$, the corresponding initial value problem is globally well posed and the solution scatters to free waves asymptotically as $t \rightarrow \pm \infty $. The main ingredients in the proof are Strichartz estimates and space-time $L^2$-bilinear null-form estimates for free waves.

[1]  Changhun Yang Global well-posedness and scattering results for Dirac Hartree-type equations with small initial data in $L^2(\mathbb{R}^3)$ , 2017 .

[2]  Achenef Tesfahun,et al.  Small Data Scattering for Cubic Dirac Equation with Hartree Type Nonlinearity in ℝ1+3 , 2017, SIAM J. Math. Anal..

[3]  S. Herr,et al.  The Cubic Dirac Equation: Small Initial Data in $${{H^{\frac{1}{2}}} (\mathbb{R}^{2}}$$H12(R2) , 2015, 1501.06874.

[4]  Achenef Tesfahun,et al.  Small data scattering for semi-relativistic equations with Hartree type nonlinearity , 2014, 1412.1626.

[5]  N. Bournaveas,et al.  Global well-posedness for the massless cubic Dirac equation , 2014, 1407.0655.

[6]  S. Herr,et al.  The Cubic Dirac Equation: Small Initial Data in $${H^1(\mathbb{R}^3)}$$H1(R3) , 2013, 1310.5280.

[7]  F. Pusateri Modified Scattering for the Boson Star Equation , 2013, 1308.6600.

[8]  S. Herr,et al.  The Boson star equation with initial data of low regularity , 2013, 1305.6392.

[9]  N. Tzvetkov,et al.  Global well-posedness of the energy-critical nonlinear Schrödinger equation with small initial data in $H^1(\mathbb{T}^3)$ , 2010, 1005.2832.

[10]  S. Herr,et al.  Erratum to “Well-posedness and scattering for the KP-II equation in a critical space” [Ann. I. H. Poincaré – AN 26 (3) (2009) 917–941] , 2010 .

[11]  K. Tsutaya,et al.  Scattering theory for the Dirac equation with a non-local term , 2009, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[12]  T. Ozawa,et al.  REMARKS ON THE SEMIRELATIVISTIC HARTREE EQUATIONS , 2008 .

[13]  S. Selberg,et al.  NULL STRUCTURE AND ALMOST OPTIMAL LOCAL REGULARITY FOR THE DIRAC-KLEIN-GORDON SYSTEM , 2007 .

[14]  Tohru Ozawa,et al.  On radial solutions of semi-relativistic Hartree equations , 2007 .

[15]  T. Ozawa,et al.  GLOBAL SOLUTIONS OF SEMIRELATIVISTIC HARTREE TYPE EQUATIONS , 2007 .

[16]  Herbert Koch,et al.  Well-posedness and scattering for the KP-II equation in a critical space , 2007, 0708.2011.

[17]  D. Tataru,et al.  A Priori Bounds for the 1D Cubic NLS in Negative Sobolev Spaces , 2006, math/0612717.

[18]  Tohru Ozawa,et al.  On the Semirelativistic Hartree-Type Equation , 2006, SIAM J. Math. Anal..

[19]  Enno Lenzmann,et al.  Well-posedness for Semi-relativistic Hartree Equations of Critical Type , 2005, math/0505456.

[20]  S. Klainerman,et al.  Bilinear space-time estimates for homogeneous wave equations , 2000 .

[21]  Vladimir Georgiev,et al.  Stationary solutions of the Maxwell-Dirac and the Klein-Gordon-Dirac equations , 1996 .

[22]  R. Glassey,et al.  On the Maxwell-Dirac equations with zero magnetic field and their solution in two space dimensions , 1976 .

[23]  Herbert Koch,et al.  Dispersive Equations and Nonlinear Waves , 2014 .

[24]  J. Kato,et al.  Endpoint Strichartz estimates for the Klein–Gordon equation in two space dimensions and some applications , 2011 .

[25]  J. Dias,et al.  On the existence of weak solutions for a nonlinear time dependent Dirac equation , 1989, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[26]  J. Glimm,et al.  Covariance Operator = Green’s Function = Resolvent Kernel = Euclidean Propagator = Fundamental Solution , 1981 .