Long-time Behavior of Solutions to Cubic Dirac Equation with Hartree Type Nonlinearity in ℝ1+2
暂无分享,去创建一个
[1] Changhun Yang. Global well-posedness and scattering results for Dirac Hartree-type equations with small initial data in $L^2(\mathbb{R}^3)$ , 2017 .
[2] Achenef Tesfahun,et al. Small Data Scattering for Cubic Dirac Equation with Hartree Type Nonlinearity in ℝ1+3 , 2017, SIAM J. Math. Anal..
[3] S. Herr,et al. The Cubic Dirac Equation: Small Initial Data in $${{H^{\frac{1}{2}}} (\mathbb{R}^{2}}$$H12(R2) , 2015, 1501.06874.
[4] Achenef Tesfahun,et al. Small data scattering for semi-relativistic equations with Hartree type nonlinearity , 2014, 1412.1626.
[5] N. Bournaveas,et al. Global well-posedness for the massless cubic Dirac equation , 2014, 1407.0655.
[6] S. Herr,et al. The Cubic Dirac Equation: Small Initial Data in $${H^1(\mathbb{R}^3)}$$H1(R3) , 2013, 1310.5280.
[7] F. Pusateri. Modified Scattering for the Boson Star Equation , 2013, 1308.6600.
[8] S. Herr,et al. The Boson star equation with initial data of low regularity , 2013, 1305.6392.
[9] N. Tzvetkov,et al. Global well-posedness of the energy-critical nonlinear Schrödinger equation with small initial data in $H^1(\mathbb{T}^3)$ , 2010, 1005.2832.
[10] S. Herr,et al. Erratum to “Well-posedness and scattering for the KP-II equation in a critical space” [Ann. I. H. Poincaré – AN 26 (3) (2009) 917–941] , 2010 .
[11] K. Tsutaya,et al. Scattering theory for the Dirac equation with a non-local term , 2009, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.
[12] T. Ozawa,et al. REMARKS ON THE SEMIRELATIVISTIC HARTREE EQUATIONS , 2008 .
[13] S. Selberg,et al. NULL STRUCTURE AND ALMOST OPTIMAL LOCAL REGULARITY FOR THE DIRAC-KLEIN-GORDON SYSTEM , 2007 .
[14] Tohru Ozawa,et al. On radial solutions of semi-relativistic Hartree equations , 2007 .
[15] T. Ozawa,et al. GLOBAL SOLUTIONS OF SEMIRELATIVISTIC HARTREE TYPE EQUATIONS , 2007 .
[16] Herbert Koch,et al. Well-posedness and scattering for the KP-II equation in a critical space , 2007, 0708.2011.
[17] D. Tataru,et al. A Priori Bounds for the 1D Cubic NLS in Negative Sobolev Spaces , 2006, math/0612717.
[18] Tohru Ozawa,et al. On the Semirelativistic Hartree-Type Equation , 2006, SIAM J. Math. Anal..
[19] Enno Lenzmann,et al. Well-posedness for Semi-relativistic Hartree Equations of Critical Type , 2005, math/0505456.
[20] S. Klainerman,et al. Bilinear space-time estimates for homogeneous wave equations , 2000 .
[21] Vladimir Georgiev,et al. Stationary solutions of the Maxwell-Dirac and the Klein-Gordon-Dirac equations , 1996 .
[22] R. Glassey,et al. On the Maxwell-Dirac equations with zero magnetic field and their solution in two space dimensions , 1976 .
[23] Herbert Koch,et al. Dispersive Equations and Nonlinear Waves , 2014 .
[24] J. Kato,et al. Endpoint Strichartz estimates for the Klein–Gordon equation in two space dimensions and some applications , 2011 .
[25] J. Dias,et al. On the existence of weak solutions for a nonlinear time dependent Dirac equation , 1989, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.
[26] J. Glimm,et al. Covariance Operator = Green’s Function = Resolvent Kernel = Euclidean Propagator = Fundamental Solution , 1981 .