Computational intelligence in wave energy: Comprehensive review and case study

Wind-generated wave energy is a renewable energy source that exhibits a huge potential for sustainable growth. The design and deployment of wave energy converters at a given location require the prediction of the amount of available wave energy flux. This and other wave parameters can be estimated by means of Computational Intelligence techniques (Neural, Fuzzy, and Evolutionary Computation). This paper reviews those used in wave energy applications, both in the resource estimation and in the design and control of wave energy converters. In particular, most of the applications of Neural Computation techniques, considered here in a broad sense, focus on the prediction of a variety of wave energy parameters by means of Multilayer Perceptrons and, at a lesser extent, by Support Vector Machines, and Extreme Learning Machines. Fuzzy Computation is also applied to estimate wave parameters and control floating wave energy converter. Evolutionary Computation algorithms are used to estimate parameters and design wave energy collectors. We complete this paper with a case study that illustrates, for the first time to the best of our knowledge, the potential of hybridizing a Coral Reefs Optimization algorithm with an Extreme Learning Machine to tackle the problem of significant wave height reconstruction.

[1]  Sujith Ravi,et al.  Environmental impacts of utility-scale solar energy , 2014 .

[2]  Vijay Devabhaktuni,et al.  Solar energy: Trends and enabling technologies , 2013 .

[3]  Aurélien Babarit,et al.  SEAREV: case study of the development of a wave energy converter , 2015 .

[4]  O. Sawodny,et al.  Nonlinear Model Predictive Control of a Point Absorber Wave Energy Converter , 2013, IEEE Transactions on Sustainable Energy.

[5]  Lars Johanning,et al.  Assessment of entanglement risk to marine megafauna due to offshore renewable energy mooring systems , 2015 .

[6]  Karsten Trulsen,et al.  Interpretations and observations of ocean wave spectra , 2010 .

[7]  Michio Sugeno,et al.  Industrial Applications of Fuzzy Control , 1985 .

[8]  Riccardo Poli,et al.  A Field Guide to Genetic Programming , 2008 .

[9]  N. Booij,et al.  THE "SWAN" WAVE MODEL FOR SHALLOW WATER , 1997 .

[10]  Ali Assi,et al.  Robust and low computational cost controller for improving captured power in heaving wave energy converters , 2015 .

[11]  Gregorio Iglesias,et al.  A review of combined wave and offshore wind energy , 2015 .

[12]  C. Guedes Soares,et al.  Numerical modelling of the wave energy in Galway Bay , 2015 .

[13]  L. Vega Ocean thermal energy conversion primer , 2002 .

[14]  Lotfi A. Zadeh,et al.  Fuzzy Sets , 1996, Inf. Control..

[15]  James C. McWilliams,et al.  Midshelf to Surfzone Coupled ROMS–SWAN Model Data Comparison of Waves, Currents, and Temperature: Diagnosis of Subtidal Forcings and Response , 2015 .

[16]  Sancho Salcedo-Sanz,et al.  A hybrid genetic algorithm—extreme learning machine approach for accurate significant wave height reconstruction , 2015 .

[17]  Qinyu. Zhu Extreme Learning Machine , 2013 .

[18]  Nasser M. Nasrabadi,et al.  Pattern Recognition and Machine Learning , 2006, Technometrics.

[19]  Julia Fernandez Chozas,et al.  Technical and Non-Technical Issues towards the Commercialisation of Wave Energy Converters , 2013 .

[20]  Tony Lewis,et al.  Wave energy resource characterization and the evaluation of potential Wave Farm sites , 2011, OCEANS'11 MTS/IEEE KONA.

[21]  Miguel Esteban,et al.  Current developments and future prospects of offshore wind and ocean energy , 2012 .

[22]  J. Bidlot,et al.  Combining wave energy with wind and solar: Short-term forecasting , 2015 .

[23]  J. D. Agrawal,et al.  Wave parameter estimation using neural networks , 2004 .

[24]  J. Kacprzyk,et al.  Probabilistic, fuzzy and rough concepts in social choice , 1996 .

[25]  Heap-Yih Chong,et al.  Ocean renewable energy in Malaysia: The potential of the Straits of Malacca , 2013 .

[26]  Sunanda Sinha,et al.  Review of recent trends in optimization techniques for solar photovoltaic–wind based hybrid energy systems , 2015 .

[27]  Chuen-Chien Lee,et al.  Fuzzy logic in control systems: fuzzy logic controller. II , 1990, IEEE Trans. Syst. Man Cybern..

[28]  Hao Wang,et al.  Modelling and experiments on ocean thermal energy for desalination , 2015 .

[29]  Javier Del Ser,et al.  A Coral Reefs Optimization algorithm for optimal mobile network deployment with electromagnetic pollution control criterion , 2014, Appl. Soft Comput..

[30]  Glen Wright Marine governance in an industrialised ocean: A case study of the emerging marine renewable energy industry , 2015 .

[31]  A. Luque,et al.  Influence of the overlap between the absorption coefficients on the efficiency of the intermediate band solar cell , 2004, IEEE Transactions on Electron Devices.

[32]  Ibrahim Dincer,et al.  Performance Assessment of a Novel Solar and Ocean Thermal Energy Conversion Based Multigeneration System for Coastal Areas , 2015 .

[33]  Qingli Luo,et al.  Temporal-spatial distribution of wave energy: A case study of Beibu Gulf, China , 2015 .

[34]  J. Falnes Ocean Waves and Oscillating Systems: Linear Interactions Including Wave-Energy Extraction , 2002 .

[35]  Wanan Sheng,et al.  On improving wave energy conversion, part I: Optimal and control technologies , 2015 .

[36]  Chih Wu,et al.  Renewable energy from the ocean : a guide to OTEC , 1994 .

[37]  Zong Woo Geem,et al.  A Coral Reefs Optimization algorithm with Harmony Search operators for accurate wind speed prediction , 2015 .

[38]  Alan S. Fung,et al.  Review of marine renewable energies: Case study of Iran , 2011 .

[39]  J. Cruz,et al.  Estimating the loads and energy yield of arrays of wave energy converters under realistic seas , 2010 .

[40]  Aurélien Babarit,et al.  Assessment of the influence of the distance between two wave energy converters on energy production , 2010 .

[41]  Raul Vicen-Bueno,et al.  Estimate of significant wave height from non-coherent marine radar images by multilayer perceptrons , 2012, EURASIP J. Adv. Signal Process..

[42]  Hongming Zhou,et al.  Extreme Learning Machines [Trends & Controversies] , 2013 .

[43]  M. T. Pontes,et al.  A Nearshore Wave Energy Atlas for Portugal , 2005 .

[44]  João C.C. Henriques,et al.  Model-prototype similarity of oscillating-water-column wave energy converters , 2014 .

[45]  Clayton E. Hiles,et al.  Simulating and forecasting ocean wave energy in western Canada , 2015 .

[46]  Iñaki Heras-Saizarbitoria,et al.  Social acceptance of ocean wave energy: A case study of an OWC shoreline plant , 2013 .

[47]  Gregorio Iglesias,et al.  Wave and offshore wind energy on an island , 2014 .

[48]  James D. Dykes,et al.  Forecasting and hindcasting waves with the SWAN model in the Southern California Bight , 2007 .

[49]  Mohammad Bagher Menhaj,et al.  Training feedforward networks with the Marquardt algorithm , 1994, IEEE Trans. Neural Networks.

[50]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[51]  Trevor Whittaker,et al.  Analysis of the nearshore wave energy resource , 2009 .

[52]  Zhong Lin Wang Triboelectric nanogenerators as new energy technology and self-powered sensors - principles, problems and perspectives. , 2014, Faraday discussions.

[53]  Mehmet Özger Neuro-fuzzy approach for the spatial estimation of ocean wave characteristics , 2009, Adv. Eng. Softw..

[54]  Gordon Reikard,et al.  Forecasting ocean wave energy: Tests of time-series models , 2009 .

[55]  G. Iglesias,et al.  The economics of wave energy: A review , 2015 .

[56]  Mark A. Shields,et al.  Marine Renewable Energy Technology and Environmental Interactions , 2014 .

[57]  Edgar G. Hertwich,et al.  Grid infrastructure for renewable power in Europe: The environmental cost , 2014 .

[58]  Kate Freeman Numerical modelling and control of an oscillating water column wave energy converter , 2015 .

[59]  Zhong Lin Wang,et al.  Networks of triboelectric nanogenerators for harvesting water wave energy: a potential approach toward blue energy. , 2015, ACS nano.

[60]  Luiz A. de S. Ribeiro,et al.  Optimization of electricity generation of a tidal power plant with reservoir constraints , 2015 .

[61]  Miguel Brito,et al.  Modelling solar potential in the urban environment: State-of-the-art review , 2015 .

[62]  Mats Leijon,et al.  Review on electrical control strategies for wave energy converting systems , 2014 .

[63]  Sancho Salcedo-Sanz,et al.  Significant wave height estimation using SVR algorithms and shadowing information from simulated and real measured X-band radar images of the sea surface , 2015 .

[64]  H. Fritz,et al.  Wave power potential along the Atlantic coast of the southeastern USA , 2009 .

[65]  Nick Cartwright,et al.  A review of wave energy estimates for nearshore shelf waters off Australia , 2014 .

[66]  Juan R. Rabuñal,et al.  Performance of artificial neural networks in nearshore wave power prediction , 2014, Appl. Soft Comput..

[67]  Sverker Molander,et al.  Renewable ocean energy in the Western Indian Ocean , 2012 .

[68]  Hans Bernhoff,et al.  Wave energy potential in the Baltic Sea and the Danish part of the North Sea, with reflections on the Skagerrak , 2007 .

[69]  A. Kimura STATISTICAL PROPERTIES OF RANDOM WAVE GROUPS , 1980 .

[70]  Raymond Alcorn,et al.  Electrical design for ocean wave and tidal energy systems , 2013 .

[71]  David Hyman Gordon,et al.  Renewable Energy Resources , 1986 .

[72]  Marzena Kryszkiewicz,et al.  Rough Set Approach to Incomplete Information Systems , 1998, Inf. Sci..

[73]  Hongming Zhou,et al.  Optimization method based extreme learning machine for classification , 2010, Neurocomputing.

[74]  Dina Makarynska,et al.  Artificial neural networks in wave predictions at the west coast of Portugal , 2005, Comput. Geosci..

[75]  Ibrahim Dincer,et al.  Multi-objective optimization of an ocean thermal energy conversion system for hydrogen production , 2015 .

[76]  Isaías González Pérez,et al.  Experimental automation platform of stand-alone hybrid renewable energy systems: Fuzzy logic application and exergy analysis , 2015 .

[77]  Zhong Lin Wang Triboelectric nanogenerators as new energy technology for self-powered systems and as active mechanical and chemical sensors. , 2013, ACS nano.

[78]  Stuart Woodman,et al.  Wave energy for Australia's National Electricity Market , 2015 .

[79]  Seyed Jamshid Mousavi,et al.  A hybrid genetic algorithm-adaptive network-based fuzzy inference system in prediction of wave parameters , 2009, Eng. Appl. Artif. Intell..

[80]  Carlos Guedes Soares,et al.  Numerical evaluation of the wave energy resource along the Atlantic European coast , 2014, Comput. Geosci..

[81]  V. Indragandhi,et al.  Review of grid integration schemes for renewable power generation system , 2014 .

[82]  H. Özkan-Haller,et al.  Integrating ocean wave energy at large-scales: A study of the US Pacific Northwest , 2015 .

[83]  Asfaw Beyene,et al.  California Wave Energy Resource Evaluation , 2007 .

[84]  Harihara Raman,et al.  Comparison of Scott Spectra with Ocean Wave Spectra , 1977 .

[85]  Duarte Valério,et al.  Identification and control of the AWS using neural network models , 2008 .

[86]  Lotfi A. Zadeh,et al.  Is there a need for fuzzy logic? , 2008, NAFIPS 2008 - 2008 Annual Meeting of the North American Fuzzy Information Processing Society.

[87]  Ali Rashid,et al.  Status and potentials of offshore wave energy resources in Chahbahar area (NW Omman Sea) , 2011 .

[88]  J. A. Portilla-Figueras,et al.  The Coral Reefs Optimization Algorithm: A Novel Metaheuristic for Efficiently Solving Optimization Problems , 2014, TheScientificWorldJournal.

[89]  Ganix Esnaola,et al.  Short-term forecasting of the wave energy flux: Analogues, random forests, and physics-based models , 2015 .

[90]  J. Mahjoobi,et al.  Prediction of significant wave height using regressive support vector machines , 2009 .

[91]  AbuBakr S. Bahaj,et al.  Generating electricity from the oceans , 2011 .

[92]  Dan Simon,et al.  Evolutionary Optimization Algorithms , 2013 .

[93]  Marc Moonen,et al.  Joint DOA and multi-pitch estimation based on subspace techniques , 2012, EURASIP J. Adv. Signal Process..

[94]  Jyh-Shing Roger Jang,et al.  ANFIS: adaptive-network-based fuzzy inference system , 1993, IEEE Trans. Syst. Man Cybern..

[95]  Yoshimi Goda,et al.  Random Seas and Design of Maritime Structures , 1985 .

[96]  M. Mccormick Ocean Wave-Energy Conversion , 2019, Encyclopedia of Ocean Sciences.

[97]  Wei Liu,et al.  Fighting global warming by climate engineering: Is the Earth radiation management and the solar radiation management any option for fighting climate change? , 2014 .

[98]  M. H. Kazeminezhad,et al.  Hindcasting of wave parameters using different soft computing methods , 2008 .

[99]  M. Deo,et al.  Derivation of wave spectrum using data driven methods , 2009 .

[100]  G. S. Dwarakish,et al.  Wave Prediction Using Neural Networks at New Mangalore Port along West Coast of India , 2015 .

[101]  Jon Andreu,et al.  Review of wave energy technologies and the necessary power-equipment , 2013 .

[102]  R. Minguez,et al.  Evaluation of global wave energy resource , 2011, OCEANS 2011 IEEE - Spain.

[103]  Cheng Wu,et al.  Semi-Supervised and Unsupervised Extreme Learning Machines , 2014, IEEE Transactions on Cybernetics.

[104]  Guoqing Zhou,et al.  Evaluation of the wave energy conditions along the coastal waters of Beibu Gulf, China , 2015 .

[105]  M. Pacheco,et al.  Spatial variability of wave energy resources around the Canary Islands , 2013, CP 2013.

[106]  M. C. Deo,et al.  Real-time wave forecasting using genetic programming , 2008 .

[107]  Nicolas Guillou,et al.  Numerical modelling of nearshore wave energy resource in the Sea of Iroise , 2015 .

[108]  Tony Lewis,et al.  Wave energy resource characterisation of the Atlantic Marine Energy Test Site , 2013 .

[109]  Lei Chen,et al.  Enhanced random search based incremental extreme learning machine , 2008, Neurocomputing.

[110]  T Moan,et al.  Wave Prediction and Robust Control of Heaving Wave Energy Devices for Irregular Waves , 2011, IEEE Transactions on Energy Conversion.

[111]  V. Tsihrintzis,et al.  A fuzzy inference system for wind-wave modeling , 2009 .

[112]  Felice Arena,et al.  Wave climate analysis for the design of wave energy harvesters in the Mediterranean Sea , 2015 .

[113]  Makarand Deo,et al.  Inverse modeling to derive wind parameters from wave measurements , 2008 .

[114]  António F.O. Falcão,et al.  Wave energy utilization: A review of the technologies , 2010 .

[115]  Mats Leijon,et al.  Experimental results on power absorption from a wave energy converter at the Lysekil wave energy research site , 2015 .

[116]  John V. Ringwood,et al.  Short-term wave forecasting with AR models in real-time optimal control of wave energy converters , 2010, 2010 IEEE International Symposium on Industrial Electronics.

[117]  M. Longuet-Higgins Statistical properties of wave groups in a random sea state , 1984, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[118]  James S. Wallace,et al.  Electricity generation from wave power in Canada , 2009 .

[119]  Emmanuel G. Reynaud,et al.  The challenging life of wave energy devices at sea: A few points to consider , 2015 .

[120]  G. Allan,et al.  Regional Employment Impacts of Marine Energy in the Scottish Economy: A General Equilibrium Approach , 2015 .

[121]  Ahmed Kattan,et al.  Time-series event-based prediction: An unsupervised learning framework based on genetic programming , 2015, Inf. Sci..

[122]  Zdzislaw Pawlak,et al.  Rough Set Theory and its Applications to Data Analysis , 1998, Cybern. Syst..

[123]  Thomas Stützle,et al.  Ant Colony Optimization Theory , 2004 .

[124]  Xinping Chen,et al.  Offshore wave energy resource assessment in the East China Sea , 2015 .

[125]  S. Iniyan,et al.  Applications of fuzzy logic in renewable energy systems – A review , 2015 .

[126]  S. Pacca,et al.  Assessing employment in renewable energy technologies: A case study for wind power in Brazil , 2014 .

[127]  Raúl Guanche,et al.  Finding gaps on power production assessment on WECs: Wave definition analysis , 2015 .

[128]  Guang-Bin Huang,et al.  Convex incremental extreme learning machine , 2007, Neurocomputing.

[129]  R. Paasch,et al.  Characterizing the wave energy resource of the US Pacific Northwest , 2010 .

[130]  Randy L. Haupt,et al.  Practical Genetic Algorithms , 1998 .

[131]  Isabel Soares,et al.  The European low-carbon mix for 2030: The role of renewable energy sources in an environmentally and socially efficient approach , 2015 .

[132]  Johannes Falnes,et al.  A REVIEW OF WAVE-ENERGY EXTRACTION , 2007 .

[133]  M. C. Deo,et al.  Neural networks for wave forecasting , 2001 .

[134]  M. Deo,et al.  Real-time wave forecasts off the western Indian coast , 2007 .

[135]  Hongming Zhou,et al.  Extreme Learning Machine for Regression and Multiclass Classification , 2012, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[136]  C. Stanley,et al.  General equivalent circuit for intermediate band devices: Potentials, currents and electroluminescence , 2004 .

[137]  Nerijus Blažauskas,et al.  Potential applications for small scale wave energy installations , 2015 .

[138]  Philipp Blechinger,et al.  Profitable climate change mitigation: The case of greenhouse gas emission reduction benefits enabled by solar photovoltaic systems , 2015 .

[139]  M. C. Deo,et al.  Estimation of wave spectral shapes using ANN , 2005, Adv. Eng. Softw..

[140]  K. Cheung,et al.  Atlas of global wave energy from 10 years of reanalysis and hindcast data , 2012 .

[141]  Giovanni Battista Ferreri,et al.  Wave energy assessment in Sicily (Italy) , 2015 .

[142]  Mohammad-Reza Alam,et al.  Real time hybrid modeling for ocean wave energy converters , 2015 .

[143]  T. Barnett,et al.  Measurements of wind-wave growth and swell decay during the Joint North Sea Wave Project (JONSWAP) , 1973 .

[144]  Gordon Reikard Integrating wave energy into the power grid: Simulation and forecasting , 2013 .

[145]  I. Bryden,et al.  Social and ecological impacts of marine energy development , 2015 .

[146]  Reza Kerachian,et al.  Wave height prediction using the rough set theory , 2012 .

[147]  Joao Cruz,et al.  Ocean Wave Energy: Current Status and Future Prespectives , 2008 .

[148]  Bernhard Schölkopf,et al.  A tutorial on support vector regression , 2004, Stat. Comput..

[149]  Henry Jeffrey,et al.  An Overview of the U.K. Marine Energy Sector , 2013, Proceedings of the IEEE.

[150]  Selçuk Bilgen,et al.  Exergy for environment, ecology and sustainable development , 2015 .

[151]  Ali Assi,et al.  An Intelligent Fuzzy Logic Controller for Maximum Power Capture of Point Absorbers , 2014 .

[152]  Antonio Luque,et al.  Quantum Dot Parameters Determination From Quantum-Efficiency Measurements , 2015, IEEE Journal of Photovoltaics.

[153]  Bikash Kumar Sahu A study on global solar PV energy developments and policies with special focus on the top ten solar PV power producing countries , 2015 .

[154]  Christopher M. Bishop,et al.  Neural networks for pattern recognition , 1995 .

[155]  Witold Pedrycz,et al.  Springer Handbook of Computational Intelligence , 2015, Springer Handbook of Computational Intelligence.

[156]  I. Lavrenov,et al.  Wind-Waves in Oceans: Dynamics and Numerical Simulations , 2010 .

[157]  Hemanshu R. Pota,et al.  Resiliency Analysis of Large-Scale Renewable Enriched Power Grid: A Network Percolation-Based Approach , 2014 .

[158]  C. Guedes Soares,et al.  On the distribution of significant wave height and associated peak periods , 2015 .

[159]  Makarand Deo,et al.  Neural networks in ocean engineering , 2006 .

[160]  J. D. Agrawal,et al.  On-line wave prediction , 2002 .

[161]  Mohamed Benbouzid,et al.  Ocean wave energy extraction: Up-to-date technologies review and evaluation , 2014, 2014 International Power Electronics and Application Conference and Exposition.

[162]  G. S. Dwarakish,et al.  Numerical Wave Modelling – A Review☆ , 2015 .

[163]  Katrin Hessner,et al.  Detection of spatio-temporal wave grouping properties by using temporal sequences of X-band radar images of the sea surface , 2013 .

[164]  Ali Kahraman,et al.  An overview of renewable electric power capacity and progress in new technologies in the world , 2015 .

[165]  Sancho Salcedo-Sanz,et al.  Offshore wind farm design with the Coral Reefs Optimization algorithm , 2014 .

[166]  Tasneem Abbasi,et al.  Wind energy: Increasing deployment, rising environmental concerns , 2014 .

[167]  Fredolin Tangang,et al.  Wave energy potential assessment in the central and southern regions of the South China Sea , 2015 .

[168]  Mats Leijon,et al.  Electrical damping of linear generators for wave energy converters—A review , 2015 .

[169]  Y. Okada,et al.  Intermediate band solar cell with extreme broadband spectrum quantum efficiency. , 2015, Physical review letters.

[170]  J. Miles,et al.  Applying regression & correlation : a guide for students and researchers , 2001 .

[171]  Pierre Pinson,et al.  Probabilistic forecasting of the wave energy flux , 2012, Applied Energy.

[172]  M. C. Deo,et al.  Filling up gaps in wave data with genetic programming , 2008 .

[173]  J. R. Scott,et al.  A Sea Spectrum for Model Tests and Long-Term Ship Prediction , 1965 .

[174]  Christophe Claramunt,et al.  A modelling approach for a cost-based evaluation of the energy produced by a marine energy farm , 2015 .

[175]  Sancho Salcedo-Sanz,et al.  A coral-reef optimization algorithm for the optimal service distribution problem in mobile radio access networks , 2014, Trans. Emerg. Telecommun. Technol..

[176]  W. Pierson,et al.  A proposed spectral form for fully developed wind seas based on the similarity theory of S , 1964 .

[177]  M. N. Sahinkaya,et al.  A review of wave energy converter technology , 2009 .

[178]  Paresh Chandra Deka,et al.  Forecasting of Time Series Significant Wave Height Using Wavelet Decomposed Neural Network , 2015 .

[179]  Francesco Fusco,et al.  Short-Term Wave Forecasting for Real-Time Control of Wave Energy Converters , 2010, IEEE Transactions on Sustainable Energy.

[180]  M. Longuet-Higgins On the joint distribution of the periods and amplitudes of sea waves , 1975 .

[181]  J. A. Battjes,et al.  Verification of Kimura’s Theory for Wave Group Statistics , 1984 .

[182]  O. Makarynskyy,et al.  Improving wave predictions with artificial neural networks , 2004 .

[183]  Madjid Karimirad,et al.  Offshore Energy Structures: For Wind Power, Wave Energy And Hybrid Marine Platforms By Madjid Karimirad , 2014 .

[184]  Sancho Salcedo-Sanz,et al.  Daily global solar radiation prediction based on a hybrid Coral Reefs Optimization – Extreme Learning Machine approach , 2014 .

[185]  S. Anand,et al.  Solar cooling systems for climate change mitigation: A review , 2015 .

[186]  Bjoern Elsaesser,et al.  Simulating ecological changes caused by marine energy devices , 2015 .

[187]  Alberto Macii,et al.  Solar energy potential assessment: An overview and a fast modeling approach with application to Italy , 2015 .

[188]  S. Mandal,et al.  Multipeakedness and groupiness of shallow water waves along Indian coast , 2003 .

[189]  Sancho Salcedo-Sanz,et al.  Feature selection in wind speed prediction systems based on a hybrid coral reefs optimization – Extreme learning machine approach , 2014 .

[190]  Giorgio Guariso,et al.  Methods and tools to evaluate the availability of renewable energy sources , 2011 .

[191]  A. P. McCabe Constrained optimization of the shape of a wave energy collector by genetic algorithm , 2013 .

[192]  S. Chatterjee,et al.  Regression Analysis by Example , 1979 .

[193]  P. A. Lynn Electricity from Wave and Tide: An Introduction to Marine Energy , 2013 .

[194]  Chong-wei Zheng,et al.  Variation of the wave energy and significant wave height in the China Sea and adjacent waters , 2015 .

[195]  Mehmet Özger,et al.  Significant wave height forecasting using wavelet fuzzy logic approach , 2010 .

[196]  Sancho Salcedo-Sanz,et al.  Improving the training time of support vector regression algorithms through novel hyper-parameters search space reductions , 2009, Neurocomputing.

[197]  John R. Koza,et al.  Human-competitive results produced by genetic programming , 2010, Genetic Programming and Evolvable Machines.

[198]  Dianhui Wang,et al.  Extreme learning machines: a survey , 2011, Int. J. Mach. Learn. Cybern..

[199]  T. Ross Fuzzy Logic with Engineering Applications , 1994 .

[200]  Markus Mueller,et al.  Enabling science and technology for marine renewable energy , 2008 .

[201]  Weon Mu Jeong,et al.  An overview of ocean renewable energy resources in Korea , 2012 .

[202]  Victor C. M. Leung,et al.  Extreme Learning Machines [Trends & Controversies] , 2013, IEEE Intelligent Systems.

[203]  Nicolas Guillou,et al.  Evaluation of wave energy potential in the Sea of Iroise with two spectral models , 2015 .

[204]  Michael Conlon,et al.  Maximising Value of Electrical Networks for Wave Energy Converter Arrays , 2013 .

[205]  Michael Conlon,et al.  Resource-induced voltage flicker for wave energy converters - assessment tools , 2013 .

[206]  Daniel M. Kammen,et al.  The role of large-scale energy storage design and dispatch in the power grid: A study of very high grid penetration of variable renewable resources , 2014 .

[207]  Young-Ho Lee,et al.  Numerical and experimental studies on the PTO system of a novel floating wave energy converter , 2012 .

[208]  M. Salvia,et al.  Energy systems modelling to support key strategic decisions in energy and climate change at regional scale , 2015 .

[209]  Z. Utlu,et al.  Thermal performance analysis of a solar energy sourced latent heat storage , 2015 .

[210]  C. Guedes Soares,et al.  Numerical modelling to estimate the spatial distribution of the wave energy in the Portuguese nearshore , 2009 .

[211]  Margaret Osikhofe Kadiri,et al.  A review of the potential water quality impacts of tidal renewable energy systems , 2012 .

[212]  John Dalsgaard Sørensen,et al.  Extrapolation of extreme response for different mooring line systems of floating wave energy converters , 2014 .

[213]  M. Deo,et al.  Genetic programming for retrieving missing information in wave records along the west coast of India , 2007 .

[214]  Eugen Rusu,et al.  Evaluation of Various Technologies for Wave Energy Conversion in the Portuguese Nearshore , 2013 .

[215]  José Antonio Lozano,et al.  Sensitivity Analysis of k-Fold Cross Validation in Prediction Error Estimation , 2010, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[216]  A. E. Eiben,et al.  Introduction to Evolutionary Computing , 2003, Natural Computing Series.

[217]  Zhihua Cui,et al.  Swarm Intelligence and Bio-Inspired Computation: Theory and Applications , 2013 .

[218]  N. C. Sahoo,et al.  A survey of technologies used in wave energy conversion systems , 2011, 2011 International Conference on Energy, Automation and Signal.

[219]  Sylvain Arlot,et al.  A survey of cross-validation procedures for model selection , 2009, 0907.4728.

[220]  Makarand Deo,et al.  Real time wave forecasting using neural networks , 1998 .

[221]  Lotfi A. Zadeh,et al.  From imprecise to granular probabilities , 2005, Fuzzy Sets Syst..

[222]  Hsiao-Tien Pao,et al.  Competitive dynamics of energy, environment, and economy in the U.S. , 2015 .

[223]  Josep R. Medina,et al.  Discussion of "Predictions of Missing Wave Data by Recurrent Neuronets" , 2004 .

[224]  Mehmet Özger,et al.  Prediction of wave parameters by using fuzzy logic approach , 2007 .

[225]  Seyed Jamshid Mousavi,et al.  APPLICATION OF FUZZY INFERENCE SYSTEM IN THE PREDICTION OF WAVE PARAMETERS , 2005 .

[226]  Subba Rao,et al.  Ocean wave parameters estimation using backpropagation neural networks , 2005 .

[227]  Chandima Gomes,et al.  New approaches in harnessing wave energy: with special attention to small islands , 2014 .

[228]  Shaun Lovejoy,et al.  The Weather and Climate: Emergent Laws and Multifractal Cascades , 2013 .

[229]  Rezvan Alamian,et al.  Evaluation of technologies for harvesting wave energy in Caspian Sea , 2014 .

[230]  Marco Dorigo,et al.  Ant colony optimization theory: A survey , 2005, Theor. Comput. Sci..

[231]  Pradnya Dixit,et al.  Removing prediction lag in wave height forecasting using Neuro - Wavelet modeling technique , 2015 .