The Sobolev Stability Threshold for 2D Shear Flows Near Couette

We consider the 2D Navier–Stokes equation on $$\mathbb T \times \mathbb R$$T×R, with initial datum that is $$\varepsilon $$ε-close in $$H^N$$HN to a shear flow (U(y), 0), where $$\Vert U(y) - y\Vert _{H^{N+4}} \ll 1$$‖U(y)-y‖HN+4≪1 and $$N>1$$N>1. We prove that if $$\varepsilon \ll \nu ^{1/2}$$ε≪ν1/2, where $$\nu $$ν denotes the inverse Reynolds number, then the solution of the Navier–Stokes equation remains $$\varepsilon $$ε-close in $$H^1$$H1 to $$(e^{t \nu \partial _{yy}}U(y),0)$$(etν∂yyU(y),0) for all $$t>0$$t>0. Moreover, the solution converges to a decaying shear flow for times $$t \gg \nu ^{-1/3}$$t≫ν-1/3 by a mixing-enhanced dissipation effect, and experiences a transient growth of gradients. In particular, this shows that the stability threshold in finite regularity scales no worse than $$\nu ^{1/2}$$ν1/2 for 2D shear flows close to the Couette flow.

[1]  W. Thomson,et al.  XXI. Stability of fluid motion (continued from the May and June numbers).—Rectilineal motion of viscous fluid between two parallel planes , 1887 .

[2]  Dongyi Wei,et al.  Linear Inviscid Damping for a Class of Monotone Shear Flow in Sobolev Spaces , 2015, 1509.08228.

[3]  Vlad Vicol,et al.  Enhanced dissipation and inviscid damping in the inviscid limit of the Navier-Stokes equations near the 2 D Couette flow , 2014 .

[4]  A. Bernoff,et al.  Transient anomalous diffusion in Poiseuille flow , 2001, Journal of Fluid Mechanics.

[5]  P. Schmid,et al.  Stability and Transition in Shear Flows. By P. J. SCHMID & D. S. HENNINGSON. Springer, 2001. 556 pp. ISBN 0-387-98985-4. £ 59.50 or $79.95 , 2000, Journal of Fluid Mechanics.

[6]  Nader Masmoudi,et al.  On the stability threshold for the 3D Couette flow in Sobolev regularity , 2015, 1511.01373.

[7]  Uriel Frisch,et al.  Hydrodynamic Instability and Transition to Turbulence , 2012 .

[8]  N. Masmoudi,et al.  Inviscid damping and the asymptotic stability of planar shear flows in the 2D Euler equations , 2013, 1306.5028.

[9]  F. Nier,et al.  Spectral asymptotics for large skew-symmetric perturbations of the harmonic oscillator , 2008, 0809.0574.

[10]  Chongchun Zeng,et al.  Inviscid Dynamical Structures Near Couette Flow , 2010, 1004.5149.

[11]  Cl'ement Mouhot,et al.  On Landau damping , 2009, 0904.2760.

[12]  Christian Zillinger,et al.  Linear Inviscid Damping for Monotone Shear Flows , 2014, 1410.7341.

[13]  Margaret Beck,et al.  Metastability and rapid convergence to quasi-stationary bar states for the two-dimensional Navier–Stokes equations , 2013, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[14]  Nader Masmoudi,et al.  Landau Damping: Paraproducts and Gevrey Regularity , 2013, Annals of PDE.

[15]  The Stability or Instability of the Steady Motions of a Perfect Liquid and of a Viscous Liquid. Part I: A Perfect Liquid , 2008 .

[16]  Jacob Bedrossian,et al.  Invariant Measures for Passive Scalars in the Small Noise Inviscid Limit , 2015, 1505.07356.

[17]  Jesenko Vukadinovic,et al.  Averaging and spectral properties for the 2D advection-diffusion equation in the semi-classical limit for vanishing diffusivity , 2013, 1309.7208.

[18]  Nader Masmoudi,et al.  Dynamics Near the Subcritical Transition of the 3D Couette Flow I: Below Threshold Case , 2015, Memoirs of the American Mathematical Society.

[19]  Emanuele Caglioti,et al.  Time Asymptotics for Solutions of Vlasov–Poisson Equation in a Circle , 1998 .

[20]  P. Constantin,et al.  Diffusion and mixing in fluid flow , 2005 .

[21]  P. Rhines,et al.  How rapidly is a passive scalar mixed within closed streamlines? , 1983, Journal of Fluid Mechanics.

[22]  Dmitri D. Ryutov,et al.  Landau damping: half a century with the great discovery , 1999 .

[23]  C. Driscoll,et al.  Observation of Diocotron Wave Echoes in a Pure Electron Plasma. , 2002 .

[24]  T. Lundgren,et al.  Strained spiral vortex model for turbulent fine structure , 1982 .

[25]  Sergey Nazarenko,et al.  On Scaling Laws for the Transition to Turbulence in Uniform-Shear Flows , 1994 .

[26]  T. M. O'Neil,et al.  Phase mixing and echoes in a pure electron plasma , 2005 .

[27]  Vlad Vicol,et al.  Enhanced Dissipation and Inviscid Damping in the Inviscid Limit of the Navier–Stokes Equations Near the Two Dimensional Couette Flow , 2014, 1408.4754.

[28]  Serge Alinhac The null condition for quasilinear wave equations in two space dimensions I , 2001 .

[29]  J. Bedrossian,et al.  Enhanced Dissipation, Hypoellipticity, and Anomalous Small Noise Inviscid Limits in Shear Flows , 2015, 1510.08098.

[30]  Thomas Kappeler,et al.  On the Regularity of the Composition of Diffeomorphisms , 2011, 1107.0488.

[31]  Andrew J. Bernoff,et al.  RAPID RELAXATION OF AN AXISYMMETRIC VORTEX , 1994 .

[32]  Dan S. Henningson,et al.  On stability of streamwise streaks and transition thresholds in plane channel flows , 1998, Journal of Fluid Mechanics.

[33]  Andrej Zlatoš Diffusion in Fluid Flow: Dissipation Enhancement by Flows in 2D , 2007 .