Containing and shrinking ellipsoids in the path-following algorithm

AbstractWe describe a new potential function and a sequence of ellipsoids in the path-following algorithm for convex quadratic programming. Each ellipsoid in the sequence contains all of the optimal primal and dual slack vectors. Furthermore, the volumes of the ellipsoids shrink at the ratio $$2^{ - \Omega (\sqrt n )} $$ , in comparison to 2−Ω(1) in Karmarkar's algorithm and 2−Ω(1/n) in the ellipsoid method. We also show how to use these ellipsoids to identify the optimal basis in the course of the algorithm for linear programming.

[1]  L. Rüedi,et al.  Ueber das Explosionstrauma des Ohres , 1942 .

[2]  George B. Dantzig,et al.  Linear programming and extensions , 1965 .

[3]  G. Dantzig,et al.  COMPLEMENTARY PIVOT THEORY OF MATHEMATICAL PROGRAMMING , 1968 .

[4]  L. G. H. Cijan A polynomial algorithm in linear programming , 1979 .

[5]  L. Khachiyan,et al.  The polynomial solvability of convex quadratic programming , 1980 .

[6]  Kenneth Steiglitz,et al.  Combinatorial Optimization: Algorithms and Complexity , 1981 .

[7]  Narendra Karmarkar,et al.  A new polynomial-time algorithm for linear programming , 1984, STOC '84.

[8]  Michael J. Todd,et al.  The Ellipsoid Method Generates Dual Variables , 1985, Math. Oper. Res..

[9]  G. Sonnevend An "analytical centre" for polyhedrons and new classes of global algorithms for linear (smooth, convex) programming , 1986 .

[10]  Y. Ye Karmarkar's algorithm and the ellipsoid method , 1987 .

[11]  James Renegar,et al.  A polynomial-time algorithm, based on Newton's method, for linear programming , 1988, Math. Program..

[12]  Michael J. Todd,et al.  Improved Bounds and Containing Ellipsoids in Karmarkar's Linear Programming Algorithm , 1988, Math. Oper. Res..

[13]  C. C. Gonzaga,et al.  An algorithm for solving linear programming programs in O(n3L) operations , 1988 .

[14]  R. C. Monteiro,et al.  Interior path following primal-dual algorithms , 1988 .

[15]  D. Bayer,et al.  The nonlinear geometry of linear programming. II. Legendre transform coordinates and central trajectories , 1989 .

[16]  Shinji Mizuno,et al.  A polynomial-time algorithm for a class of linear complementarity problems , 1989, Math. Program..

[17]  N. Megiddo Pathways to the optimal set in linear programming , 1989 .

[18]  D. Bayer,et al.  The Non-Linear Geometry of Linear Pro-gramming I: A?ne and projective scaling trajectories , 1989 .

[19]  Clóvis C. Gonzaga,et al.  Conical projection algorithms for linear programming , 1989, Math. Program..

[20]  Yinyu Ye,et al.  Recovering Optimal Basic Variables in Karmarkar's Polynomial Algorithm for Linear Programming , 1990, Math. Oper. Res..

[21]  Pravin M. Vaidya,et al.  An algorithm for linear programming which requires O(((m+n)n2+(m+n)1.5n)L) arithmetic operations , 1990, Math. Program..