Signal processing with fractional lower order moments: stable processes and their applications

Non-Gaussian statistical signal processing is important when signals and/or noise deviate from the ideal Gaussian model. Stable distributions are among the most important non-Gaussian models. They share defining characteristics with the Gaussian distribution, such as the stability property and central limit theorems, and in fact include the Gaussian distribution as a limiting case. To help engineers better understand the stable models and develop methodologies for their applications in signal processing. A tutorial review of the basic characteristics of stable distributions and stable signal processing is presented. The emphasis is on the differences and similarities between stable signal processing methods based on fractional lower-order moments and Gaussian signal processing methods based on second-order moments. >

[1]  J. Holtsmark,et al.  Über die Verbreiterung von Spektrallinien , 1919 .

[2]  H. Bergström,et al.  On some expansions of stable distribution functions , 1952 .

[3]  V. Zolotarev Mellin-Stieltjes Transforms in Probability Theory , 1957 .

[4]  P. Mertz Model of Impulsive Noise for Data Transmission , 1961 .

[5]  Jay M. Berger,et al.  A New Model for Error Clustering in Telephone Circuits , 1963, IBM J. Res. Dev..

[6]  B. Mandelbrot The Variation of Certain Speculative Prices , 1963 .

[7]  E. Fama The Behavior of Stock-Market Prices , 1965 .

[8]  L. Kurz,et al.  An Optimal Nonlinear Detector for Digital Data Transmission Through Non-Gaussian Channels , 1966 .

[9]  S. James Press,et al.  A Compound Events Model for Security Prices , 1967 .

[10]  E. Fama,et al.  Some Properties of Symmetric Stable Distributions , 1968 .

[11]  B. Mandelbrot,et al.  Fractional Brownian Motions, Fractional Noises and Applications , 1968 .

[12]  Michael Schilder,et al.  Some Structure Theorems for the Symmetric Stable Laws , 1970 .

[13]  Thomas J. Sargent,et al.  Regression With Non-Gaussian Stable Disturbances: Some Sampling Results , 1971 .

[14]  E. Fama,et al.  Parameter Estimates for Symmetric Stable Distributions , 1971 .

[15]  John Teichmoeller A Note on the Distribution of Stock Price Changes , 1971 .

[16]  S. James Press,et al.  Estimation in Univariate and Multivariate Stable Distributions , 1972 .

[17]  Clive W. J. Granger,et al.  “Infinite Variance” and Research Strategy in Time Series Analysis , 1972 .

[18]  Edwin L. Crow,et al.  Tables and graphs of the stable probability density functions , 1973 .

[19]  J. Claerbout,et al.  Robust Modeling With Erratic Data , 1973 .

[20]  S. Wolfe,et al.  On the Local Behavior of Characteristic Functions , 1973 .

[21]  M. Shinde,et al.  Signal Detection in the Presence of Atmospheric Noise in Tropics , 1974, IEEE Trans. Commun..

[22]  B. Stuck,et al.  A statistical analysis of telephone noise , 1974 .

[23]  W. Steiger,et al.  Regression and autoregression with infinite variance , 1974, Advances in Applied Probability.

[24]  A. Paulson,et al.  The estimation of the parameters of the stable laws , 1975 .

[25]  W. DuMouchel Stable Distributions in Statistical Inference: 2. Information from Stably Distributed Samples , 1975 .

[26]  S. J. Press,et al.  Stable Distributions: Probability, Inference, and Applications in Finance—A Survey, and a Review of Recent Results , 1975 .

[27]  B. W. Stuck,et al.  Distinguishing stable probability measures part I: Discrete time , 1976, The Bell System Technical Journal.

[28]  V. Paulauskas,et al.  Some Remarks on Multivariate Stable Distributions , 1976 .

[29]  V. Yohai,et al.  Asymptotic Behavior of Least-Squares Estimates for Autoregressive Processes with Infinite Variances , 1977 .

[30]  David Middleton,et al.  Statistical-Physical Models of Electromagnetic Interference , 1977, IEEE Transactions on Electromagnetic Compatibility.

[31]  AUTOREGRESSIVE PROCESSES WITH INFINITE VARIANCE , 1977 .

[32]  Grady Miller Properties of certain symmetric stable distributions , 1978 .

[33]  Yuzo Hosoya Discrete-Time Stable Processes and Their Certain Properties , 1978 .

[34]  B. Stuck Minimum error dispersion linear filtering of scalar symmetric stable processes , 1978 .

[35]  D. Middleton Procedures for Determining the Parameters of the First-Order Canonical Models of Class A and Class B Electromagnetic Interference [10] , 1979, IEEE Transactions on Electromagnetic Compatibility.

[36]  W. L. Steiger,et al.  LEAST ABSOLUTE DEVIATION ESTIMATES IN AUTOREGRESSION WITH INFINITE VARIANCE. , 1979 .

[37]  H. L. Taylor,et al.  Deconvolution with the l 1 norm , 1979 .

[38]  Ioannis A. Koutrouvelis,et al.  Regression-Type Estimation of the Parameters of Stable Laws , 1980 .

[39]  I. A. Koutrouvelis An iterative procedure for the estimation of the parameters of stable laws , 1981 .

[40]  S. Cambanis,et al.  Linear Problems in Linear Problems in pth Order and Stable Processes , 1981 .

[41]  Luigi Paura,et al.  Error Probability for Fading CPSK Signals in Gaussian and Impulsive Atmospheric Noise Environments , 1981, IEEE Transactions on Aerospace and Electronic Systems.

[42]  A. Feuerverger,et al.  On Some Fourier Methods for Inference , 1981 .

[43]  C. D. Hardin,et al.  On the linearity of regression , 1982 .

[44]  Hong-Zhi An,et al.  On convergence of LAD estimates in autoregression with infinite variance , 1982 .

[45]  Harmonizable stable processes , 1982 .

[46]  Luigi Paura,et al.  Error Rates for Fading NCFSK Signals in an Additive Mixture of Impulsive and Gaussian Noise , 1982, IEEE Trans. Commun..

[47]  W. DuMouchel Estimating the Stable Index $\alpha$ in Order to Measure Tail Thickness: A Critique , 1983 .

[48]  Mohsen Pourahmadi,et al.  On Minimality and Interpolation of Harmonizable Stable Processes , 1984 .

[49]  Stamatis Cambanis,et al.  Spectral density estimation for stationary stable processes , 1984 .

[50]  Rollin Brant Approximate Likelihood and Probability Calculations Based on Transforms , 1984 .

[51]  S. Cambanis,et al.  Prediction of stable processes: Spectral and moving average representations , 1984 .

[52]  A. Weron Harmonizable stable processes on groups: spectral, ergodic and interpolation properties , 1985 .

[53]  S Cambanis,et al.  On Prediction of Harmonizable Stable Processes. , 1985 .

[54]  J. Bee Bednar,et al.  Fast algorithms for lpdeconvolution , 1985, IEEE Trans. Acoust. Speech Signal Process..

[55]  D. B. Cline,et al.  Linear prediction of ARMA processes with infinite variance , 1985 .

[56]  J. McCulloch,et al.  Simple consistent estimators of stable distribution parameters , 1986 .

[57]  E. Seneta,et al.  Simulation of estimates using the empirical characteristic function , 1987 .

[58]  Clare D. McGillem,et al.  Performance Improvement of DPLL's in Non-Gaussian Noise Using Robust Estimators , 1987, IEEE Trans. Commun..

[59]  M. Harisankar,et al.  Simulated Performance of a DS Spread-Spectrum System in Impulsive Atmospheric Noise , 1987, IEEE Transactions on Electromagnetic Compatibility.

[60]  Stamatis Cambanis,et al.  Innovations and Wold decompositions of stable sequences , 1988 .

[61]  Stuart C. Schwartz,et al.  Comparison of adaptive and robust receivers for signal detection in ambient underwater noise , 1989, IEEE Trans. Acoust. Speech Signal Process..

[62]  Vedat Akgiray,et al.  Estimation of Stable-Law Parameters: A Comparative Study , 1989 .

[63]  G. E. Ellis,et al.  Statistical Characteristics of Ocean Acoustic Noise Processes , 1989 .

[64]  J. Leeuw,et al.  Estimation of regression coefficients with the help of characteristic functions , 1989 .

[65]  R. K. Rao Yarlagadda,et al.  Linear predictive spectral estimation via the L1 norm , 1989 .

[66]  Jong-Soo Seo,et al.  Impact of non-Gaussian impulsive noise on the performance of high-level QAM , 1989 .

[67]  B. Brorsen,et al.  Maximum likelihood estimates of sym-metric stable distribution parameters , 1990 .

[68]  H. I. Pereira Tests for the Chacteristic Exponent and the Scale Parameter of Symmetric Stable Distributions , 1990 .

[69]  Rao Yarlagadda,et al.  Lp normed minimization with applications to linear predictive modeling for sinusoidal frequency estimation , 1991, Signal Process..