Application of sol–gel TiO2 film for an extended-gate H+ ion-sensitive field-effect transistor

Abstract In this study, a sol–gel TiO 2 thin film has been spin-coated on a commercial ITO glass substrate as the extended-gate field effect transistor (EGFET) for hydrogen ion sensing. The as-deposited films are further annealed at various temperatures ( T a ) under ambient atmosphere. It is found that the bi-layer structure of TiO 2 /ITO EGFET exhibits good linear sensitivity from pH 1 to 11. Anatase TiO 2 appeared as early as T a  = 200 °C and a brookite (121) diffraction evolved at T a  = 500 °C. No prominent influence on the surface fine structures could be found at higher T a . Due to the reduction or disappearance of the surface hydroxyl groups on TiO 2 , the sensitivities of the TiO 2 /ITO pH-EGFET device are rapidly reduced. However, the influence of the conductivity decay for ITO substrates annealed at high T a could not be excluded. A maximum sensitivity 61.44 mV/pH is achieved as T a  = 300 °C. The bi-layer structure of TiO 2 /ITO exhibits better long-term stability than the traditional ITO sensing membranes. In addition, the asymmetric hysteresis is more significant in alkaline buffer solutions, which could be explained by a site-binding model because the diffusion of H + ions into the buried sites of the sensing film is more rapid than that of OH − ions.

[1]  T. Sun,et al.  pH-based potentiometrical flow injection biosensor for urea , 2003 .

[2]  M. S. Ghamsari,et al.  Modifier ligands effects on the synthesized TiO2 nanocrystals , 2008 .

[3]  M. Esashi,et al.  ISFET's using inorganic gate thin films , 1979, IEEE Transactions on Electron Devices.

[4]  Chi‐Wen Lin,et al.  Photocatalytic destruction of gaseous toluene by porphyrin-sensitized TiO2 thin films , 2011 .

[5]  M. Crisan,et al.  Atomic Force Microscopy Study of TiO2 Films Obtained by the Sol-Gel Method , 1998 .

[6]  Maria Strømme,et al.  Impedance spectroscopy on lithiated Ti oxide and Ti oxyfluoride thin films , 1996 .

[7]  L. Bousse,et al.  Hysteresis in Al2O3 Gate ISFETs , 1990 .

[8]  A. Lycourghiotis,et al.  Effect of temperature on the point of zero charge and surface charge of TiO2 , 1990 .

[9]  Ming-Ta Hsieh,et al.  MOSFET transistors fabricated with high permitivity TiO/sub 2/ dielectrics , 1997 .

[10]  Bin Chen,et al.  Corrosion behavior of TiO2 films on Mg–Zn alloy in simulated body fluid , 2011 .

[11]  Wen-Yaw Chung,et al.  Study on extended gate field effect transistor with tin oxide sensing membrane , 2000 .

[12]  M. V. van Bommel,et al.  Characterisation of Sol-Gel TiO2 Films by Etching , 1997 .

[13]  J. V. Spiegel,et al.  The extended gate chemically sensitive field effect transistor as multi-species microprobe☆ , 1983 .

[14]  Tayyab I. Suratwala,et al.  Sol—gel derived coatings on glass , 1997 .

[15]  Paik-Kyun Shin,et al.  The pH-sensing and light-induced drift properties of titanium dioxide thin films deposited by MOCVD , 2003 .

[16]  Arie Zaban,et al.  ELECTRIC POTENTIAL DISTRIBUTION AND SHORT-RANGE SCREENING IN NANOPOROUS TIO2 ELECTRODES , 1997 .

[17]  P. Cremer,et al.  Investigation of Water Structure at the TiO2/Aqueous Interface , 2004 .

[18]  B. Cullity,et al.  Elements of X-ray diffraction , 1957 .

[19]  Zhen Wang,et al.  A biomimetic sensor for the determination of extracellular O(2)(-) using synthesized Mn-TPAA on TiO(2) nanoneedle film. , 2011, Biosensors & bioelectronics.

[20]  M. J. Alam,et al.  Preparation and Characterization of TiO2 Thin Films by Sol-Gel Method , 2002 .

[21]  Xiufeng Xiao,et al.  Preparation and bioactivity of TiO2 nanotube arrays containing calcium and phosphorus , 2012 .

[22]  S. A. Agnihotry,et al.  Aging effect of diethanolamine stabilized sol on different properties of TiO2 films: Electrochromic applications , 2007 .

[23]  Ian M. Thomas,et al.  Optical coatings prepared from colloidal media , 1989 .

[24]  C. Granqvist Transparent conductors as solar energy materials: A panoramic review , 2007 .

[25]  J. Weng,et al.  Surface characterization of titanium and adsorption of bovine serum albumin , 2002 .

[26]  T. Sun,et al.  Portable urea biosensor based on the extended-gate field effect transistor , 2003 .

[27]  Marcelo Mulato,et al.  Extended gate field effect transistor using V2O5 xerogel sensing membrane by sol–gel method , 2009 .

[28]  S. Chang,et al.  Sensing Performance of EGFET pH Sensors with CuO Nanowires Fabricated on Glass Substrate , 2012, International Journal of Electrochemical Science.

[29]  Pivovarov Surface Structure and Site Density of the Oxide-Solution Interface. , 1997, Journal of colloid and interface science.

[30]  S. M. Sze,et al.  Physics of semiconductor devices , 1969 .

[31]  P Bergveld,et al.  Development of an ion-sensitive solid-state device for neurophysiological measurements. , 1970, IEEE transactions on bio-medical engineering.

[32]  D. E. Yates,et al.  Site-binding model of the electrical double layer at the oxide/water interface , 1974 .

[33]  M. Burrow,et al.  The pH change after HCl titration into resting and stimulated saliva for a buffering capacity test. , 2006, Australian dental journal.

[34]  C. Sanchez,et al.  Hydrolysis of titanium alkoxides: modification of the molecular precursor by acetic acid , 1987 .

[35]  Wen-Yaw Chung,et al.  Separate structure extended gate H+-ion sensitive field effect transistor on a glass substrate , 2000 .

[36]  Sang Kyu Kim,et al.  Ion-Sensitive Field-Effect Transistor for Biological Sensing , 2009, Sensors.

[37]  Jung-Chuan Chou,et al.  Temperature effect on AlN/SiO2 gate pH-ion-sensitive field-effect transistor devices , 2002 .

[38]  A. Soldatkin,et al.  Determination of urea in blood serum by a urease biosensor based on an ion-sensitive field-effect transistor , 1995 .

[39]  Paras N. Prasad,et al.  Sol−Gel-Processed SiO2/TiO2/Poly(vinylpyrrolidone) Composite Materials for Optical Waveguides , 1996 .

[40]  T. Sun,et al.  Structures of Anodized Aluminum Oxide Extended-Gate Field-Effect Transistors on pH Sensors , 2006 .

[41]  Hongxing Yang,et al.  Low resistance dye-sensitized solar cells based on all-titanium substrates using wires and sheets , 2009 .

[42]  M. Anderson,et al.  Peptization process in the sol-gel preparation of porous anatase (TiO2) , 1995 .

[43]  A. Harizanova,et al.  Development and investigation of sol–gel solutions for the formation of TiO2 coatings , 2000 .

[44]  M. Grätzel,et al.  A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films , 1991, Nature.

[45]  W. Ko,et al.  A generalized theory of an electrolyte-insulator-semiconductor field-effect transistor , 1986, IEEE Transactions on Electron Devices.

[47]  J. Mackenzie Applications of the sol-gel process , 1988 .

[48]  Jung-Chuan Chou,et al.  Drift and Hysteresis Effects on AlN/SiO2 Gate pH Ion-Sensitive Field-Effect Transistor , 2003 .

[49]  Li-Te Yin,et al.  Enzyme immobilization on nitrocellulose film for pH-EGFET type biosensors , 2010 .

[50]  J. A. Diniz,et al.  Thin titanium oxide films deposited by e-beam evaporation with additional rapid thermal oxidation and annealing for ISFET applications , 2010 .

[51]  Ying-Chung Chen,et al.  Temperature effects on the characteristics of hydrogen ion-sensitive field-effect transistors with sol–gel-derived lead titanate gates , 2004 .

[52]  J. Chou,et al.  Study of TiO2 Thin Films for Ion Sensitive Field Effect Transistor Application with RF Sputtering Deposition , 2004 .