Mathematical foundations of hybrid data assimilation from a synchronization perspective.

The state-of-the-art data assimilation methods used today in operational weather prediction centers around the world can be classified as generalized one-way coupled impulsive synchronization. This classification permits the investigation of hybrid data assimilation methods, which combine dynamic error estimates of the system state with long time-averaged (climatological) error estimates, from a synchronization perspective. Illustrative results show how dynamically informed formulations of the coupling matrix (via an Ensemble Kalman Filter, EnKF) can lead to synchronization when observing networks are sparse and how hybrid methods can lead to synchronization when those dynamic formulations are inadequate (due to small ensemble sizes). A large-scale application with a global ocean general circulation model is also presented. Results indicate that the hybrid methods also have useful applications in generalized synchronization, in particular, for correcting systematic model errors.

[1]  P. Courtier,et al.  Four-dimensional variational data assimilation using the adjoint of a multilevel primitive-equation model , 1991 .

[2]  S. Blanes,et al.  The Magnus expansion and some of its applications , 2008, 0810.5488.

[3]  Alberto Carrassi,et al.  Developing a dynamically based assimilation method for targeted and standard observations , 2005 .

[4]  Dara Entekhabi,et al.  The role of model dynamics in ensemble Kalman filter performance for chaotic systems , 2011 .

[5]  M. Iredell,et al.  The NCEP Climate Forecast System Version 2 , 2014 .

[6]  L. Tsimring,et al.  Generalized synchronization of chaos in directionally coupled chaotic systems. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[7]  P. Oke,et al.  Implications of the Form of the Ensemble Transformation in the Ensemble Square Root Filters , 2008 .

[8]  P. Courtier,et al.  Variational Assimilation of Meteorological Observations With the Adjoint Vorticity Equation. I: Theory , 2007 .

[9]  Luigi Palatella,et al.  Interaction of Lyapunov vectors in the formulation of the nonlinear extension of the Kalman filter. , 2015, Physical review. E, Statistical, nonlinear, and soft matter physics.

[10]  Lawrence L. Takacs,et al.  Data Assimilation Using Incremental Analysis Updates , 1996 .

[11]  Uang,et al.  The NCEP Climate Forecast System Reanalysis , 2010 .

[12]  Luigi Palatella,et al.  Nonlinear Processes in Geophysics On the Kalman Filter error covariance collapse into the unstable subspace , 2011 .

[13]  Craig H. Bishop,et al.  Localized Ensemble-Based Tangent Linear Models and Their Use in Propagating Hybrid Error Covariance Models , 2016 .

[14]  Craig H. Bishop,et al.  Adaptive sampling with the ensemble transform Kalman filter , 2001 .

[15]  Jeffrey B. Weiss,et al.  Synchronicity in predictive modelling: a new view of data assimilation , 2006 .

[16]  Craig H. Bishop,et al.  The Local Ensemble Tangent Linear Model: an enabler for coupled model 4D‐Var , 2017 .

[17]  J. Hoke,et al.  The Initialization of Numerical Models by a Dynamic-Initialization Technique , 1976 .

[18]  L. Tsimring,et al.  The analysis of observed chaotic data in physical systems , 1993 .

[19]  Carroll,et al.  Synchronization in chaotic systems. , 1990, Physical review letters.

[20]  Louis M. Pecora,et al.  Fundamentals of synchronization in chaotic systems, concepts, and applications. , 1997, Chaos.

[21]  T. Hamill,et al.  A Hybrid Ensemble Kalman Filter-3D Variational Analysis Scheme , 2000 .

[22]  Xuguang Wang,et al.  Incorporating Ensemble Covariance in the Gridpoint Statistical Interpolation Variational Minimization: A Mathematical Framework , 2010 .

[23]  George R. Sell,et al.  Ensemble Dynamics and Bred Vectors , 2011, 1108.4918.

[24]  Stephen G. Penny,et al.  The Hybrid Local Ensemble Transform Kalman Filter , 2014 .

[25]  Chris Snyder,et al.  A Hybrid ETKF-3DVAR Data Assimilation Scheme for the WRF Model. Part I: Observing System Simulation Experiment , 2008 .

[26]  J. Toole,et al.  Interannual atmospheric variability forced by the deep equatorial Atlantic Ocean , 2011, Nature.

[27]  Qinghua Zhang,et al.  Stability of the Kalman filter for continuous time output error systems , 2016, Syst. Control. Lett..

[28]  Y. Sasaki SOME BASIC FORMALISMS IN NUMERICAL VARIATIONAL ANALYSIS , 1970 .

[29]  M. Ghil,et al.  Data assimilation in meteorology and oceanography , 1991 .

[30]  David D. Parrish,et al.  GSI 3DVar-Based Ensemble-Variational Hybrid Data Assimilation for NCEP Global Forecast System: Single-Resolution Experiments , 2013 .

[31]  A. Carrassi,et al.  Data assimilation by delay‐coordinate nudging , 2015, 1510.07884.

[32]  Massimo Bonavita,et al.  EnKF and Hybrid Gain Ensemble Data Assimilation. Part II: EnKF and Hybrid Gain Results , 2015 .

[33]  Ulrich Parlitz,et al.  Theory and Computation of Covariant Lyapunov Vectors , 2011, Journal of Nonlinear Science.

[34]  Anna Trevisan,et al.  Assimilation of Standard and Targeted Observations within the Unstable Subspace of the Observation–Analysis–Forecast Cycle System , 2004 .

[35]  Andrew C. Lorenc,et al.  Analysis methods for numerical weather prediction , 1986 .

[36]  Alberto Carrassi,et al.  Adaptive observations and assimilation in the unstable subspace by breeding on the data-assimilation system , 2007 .

[37]  J. Yorke,et al.  Differentiable generalized synchronization of chaos , 1997 .

[38]  T. Hamill,et al.  On the Theoretical Equivalence of Differently Proposed Ensemble 3DVAR Hybrid Analysis Schemes , 2007 .

[39]  A. Carrassi,et al.  Four-dimensional ensemble variational data assimilation and the unstable subspace , 2017 .

[40]  G. Evensen Sequential data assimilation with a nonlinear quasi‐geostrophic model using Monte Carlo methods to forecast error statistics , 1994 .

[41]  E. Kalnay,et al.  The local ensemble transform Kalman filter and the running-in-place algorithm applied to a global ocean general circulation model , 2013 .

[42]  E. Kalnay,et al.  Comparison of Local Ensemble Transform Kalman Filter, 3DVAR, and 4DVAR in a Quasigeostrophic Model , 2009 .

[43]  E. Kalnay,et al.  A Hybrid Global Ocean Data Assimilation System at NCEP , 2014 .

[44]  E. Kalnay,et al.  C ○ 2007 The Authors , 2006 .

[45]  J. Whitaker,et al.  Ensemble Data Assimilation without Perturbed Observations , 2002 .

[46]  E. Lorenz Deterministic nonperiodic flow , 1963 .

[47]  Istvan Szunyogh,et al.  Efficient data assimilation for spatiotemporal chaos: A local ensemble transform Kalman filter , 2005, physics/0511236.

[48]  M. Kanamitsu,et al.  NCEP–DOE AMIP-II Reanalysis (R-2) , 2002 .

[49]  S. Saha,et al.  The NCEP Climate Forecast System , 2006 .

[50]  Zhong Liu,et al.  Supreme Local Lyapunov exponents and Chaotic impulsive Synchronization , 2013, Int. J. Bifurc. Chaos.

[51]  H. Glahn,et al.  The Use of Model Output Statistics (MOS) in Objective Weather Forecasting , 1972 .

[52]  R. E. Kalman,et al.  A New Approach to Linear Filtering and Prediction Problems , 2002 .

[53]  W. Magnus On the exponential solution of differential equations for a linear operator , 1954 .

[54]  E. Kalnay,et al.  Handling Nonlinearity in an Ensemble Kalman Filter: Experiments with the Three-Variable Lorenz Model , 2012 .

[55]  Andrew C. Lorenc,et al.  The potential of the ensemble Kalman filter for NWP—a comparison with 4D‐Var , 2003 .

[56]  Andrew C. Lorenc,et al.  Why does 4D‐Var beat 3D‐Var? , 2005 .

[57]  Michael Ghil,et al.  Data assimilation as a nonlinear dynamical systems problem: stability and convergence of the prediction-assimilation system. , 2007, Chaos.

[58]  Chris Snyder,et al.  A Hybrid ETKF–3DVAR Data Assimilation Scheme for the WRF Model. Part II: Real Observation Experiments , 2008 .

[59]  Dusanka Zupanski,et al.  The maximum likelihood ensemble filter performances in chaotic systems , 2008 .

[60]  Henry D. I. Abarbanel,et al.  Estimating the state of a geophysical system with sparse observations: time delay methods to achieve accurate initial states for prediction , 2016 .

[61]  Craig H. Bishop,et al.  A Comparison of Hybrid Ensemble Transform Kalman Filter–Optimum Interpolation and Ensemble Square Root Filter Analysis Schemes , 2007 .

[62]  J. C. Quinn,et al.  The Number of Required Observations in Data Assimilation for a Shallow-Water Flow , 2013 .

[63]  Hong Li,et al.  Data Assimilation as Synchronization of Truth and Model: Experiments with the Three-Variable Lorenz System* , 2006 .

[64]  S. Riser,et al.  The ARGO Project: Global Ocean Observations for Understanding and Prediction of Climate Variability. Report for Calendar Year 2004 , 2000 .