Themes and variations in riboswitch structure and function.

The complexity of gene expression control by non-coding RNA has been highlighted by the recent progress in the field of riboswitches. Discovered a decade ago, riboswitches represent a diverse group of non-coding mRNA regions that possess a unique ability to directly sense cellular metabolites and modulate gene expression through formation of alternative metabolite-free and metabolite-bound conformations. Such protein-free metabolite sensing domains utilize sophisticated three-dimensional folding of RNA molecules to discriminate between a cognate ligand from related compounds so that only the right ligand would trigger a genetic response. Given the variety of riboswitch ligands ranging from small cations to large coenzymes, riboswitches adopt a great diversity of structures. Although many riboswitches share structural principles to build metabolite-competent folds, form precise ligand-binding pockets, and communicate a ligand-binding event to downstream regulatory regions, virtually all riboswitch classes possess unique features for ligand recognition, even those tuned to recognize the same metabolites. Here we present an overview of the biochemical and structural research on riboswitches with a major focus on common principles and individual characteristics adopted by these regulatory RNA elements during evolution to specifically target small molecules and exert genetic responses. This article is part of a Special Issue entitled: Riboswitches.

[1]  Andrea Haller,et al.  Conformational capture of the SAM-II riboswitch. , 2011, Nature chemical biology.

[2]  E. Westhof,et al.  The interaction networks of structured RNAs. , 2006, Nucleic acids research.

[3]  R. Nussinov,et al.  The role of dynamic conformational ensembles in biomolecular recognition. , 2009, Nature chemical biology.

[4]  Quentin Vicens,et al.  Molecular sensing by the aptamer domain of the FMN riboswitch: a general model for ligand binding by conformational selection , 2011, Nucleic acids research.

[5]  Feng Ding,et al.  RNA-Puzzles: a CASP-like evaluation of RNA three-dimensional structure prediction. , 2012, RNA.

[6]  Ronald R. Breaker,et al.  Eukaryotic TPP riboswitch regulation of alternative splicing involving long-distance base pairing , 2013, Nucleic acids research.

[7]  Evgeny Nudler,et al.  Sensing Small Molecules by Nascent RNA A Mechanism to Control Transcription in Bacteria , 2002, Cell.

[8]  T. Henkin,et al.  Crystal structures of the SAM-III/SMK riboswitch reveal the SAM-dependent translation inhibition mechanism , 2008, Nature Structural &Molecular Biology.

[9]  R. Montange,et al.  Free state conformational sampling of the SAM-I riboswitch aptamer domain. , 2010, Structure.

[10]  R. Breaker,et al.  Riboswitches in eubacteria sense the second messenger c-di-AMP , 2013, Nature chemical biology.

[11]  R. Breaker,et al.  Control of alternative RNA splicing and gene expression by eukaryotic riboswitches , 2007, Nature.

[12]  N. Ban,et al.  Structure of the Eukaryotic Thiamine Pyrophosphate Riboswitch with Its Regulatory Ligand , 2006, Science.

[13]  Shane J. Neph,et al.  Identification of 22 candidate structured RNAs in bacteria using the CMfinder comparative genomics pipeline , 2007, Nucleic acids research.

[14]  Michael E Webb,et al.  Thiamine biosynthesis in algae is regulated by riboswitches , 2007, Proceedings of the National Academy of Sciences.

[15]  Jeffrey E. Barrick,et al.  Metabolite-binding RNA domains are present in the genes of eukaryotes. , 2003, RNA.

[16]  Renate Rieder,et al.  Ligand-induced folding of the thiM TPP riboswitch investigated by a structure-based fluorescence spectroscopic approach , 2007, Nucleic acids research.

[17]  S. Strobel,et al.  Structural investigation of the GlmS ribozyme bound to Its catalytic cofactor. , 2007, Chemistry & biology.

[18]  A. Rich,et al.  Structural analysis of spermine and magnesium ion binding to yeast phenylalanine transfer RNA. , 1978, Proceedings of the National Academy of Sciences of the United States of America.

[19]  R. Breaker,et al.  Riboswitches that sense S-adenosylhomocysteine and activate genes involved in coenzyme recycling. , 2008, Molecular cell.

[20]  Andrea Haller,et al.  Folding and ligand recognition of the TPP riboswitch aptamer at single-molecule resolution , 2013, Proceedings of the National Academy of Sciences.

[21]  Mijeong Kang,et al.  Structural Insights into riboswitch control of the biosynthesis of queuosine, a modified nucleotide found in the anticodon of tRNA. , 2009, Molecular cell.

[22]  Irnov Irnov,et al.  Mechanism of mRNA destabilization by the glmS ribozyme. , 2007, Genes & development.

[23]  Zasha Weinberg,et al.  A eubacterial riboswitch class that senses the coenzyme tetrahydrofolate. , 2010, Chemistry & biology.

[24]  R. Breaker,et al.  Comparative genomics reveals 104 candidate structured RNAs from bacteria, archaea, and their metagenomes , 2010, Genome Biology.

[25]  R. Montange,et al.  Structure of a natural guanine-responsive riboswitch complexed with the metabolite hypoxanthine , 2004, Nature.

[26]  Kirsten L. Frieda,et al.  Direct Observation of Hierarchical Folding in Single Riboswitch Aptamers , 2008, Science.

[27]  E. Westhof,et al.  Anion binding to nucleic acids. , 2004, Structure.

[28]  R. Micura,et al.  Folding of a transcriptionally acting PreQ1 riboswitch , 2010, Proceedings of the National Academy of Sciences.

[29]  G. Petsko,et al.  Weakly polar interactions in proteins. , 1988, Advances in protein chemistry.

[30]  Adam Roth,et al.  Confirmation of a second natural preQ1 aptamer class in Streptococcaceae bacteria. , 2008, RNA.

[31]  A. Serganov,et al.  Structural insights into ligand binding and gene expression control by an adenosylcobalamin riboswitch , 2012, Nature Structural &Molecular Biology.

[32]  M. Fedor,et al.  The glmS Riboswitch Integrates Signals from Activating and Inhibitory Metabolites In Vivo , 2010, Nature Structural &Molecular Biology.

[33]  Cody W. Geary,et al.  The UA_handle: a versatile submotif in stable RNA architectures† , 2008, Nucleic acids research.

[34]  Adam Roth,et al.  A riboswitch selective for the queuosine precursor preQ1 contains an unusually small aptamer domain , 2007, Nature Structural &Molecular Biology.

[35]  B. Suess,et al.  A theophylline responsive riboswitch based on helix slipping controls gene expression in vivo. , 2004, Nucleic acids research.

[36]  Dinshaw J. Patel,et al.  Fluoride ion encapsulation by Mg2+ and phosphates in a fluoride riboswitch , 2012, Nature.

[37]  Andrej Lupták,et al.  Convergent evolution of adenosine aptamers spanning bacterial, human, and random sequences revealed by structure-based bioinformatics and genomic SELEX. , 2012, Chemistry & biology.

[38]  T. Henkin,et al.  The SMK box is a new SAM-binding RNA for translational regulation of SAM synthetase , 2006, Nature Structural &Molecular Biology.

[39]  A. Serganov Determination of riboswitch structures: Light at the end of the tunnel? , 2010, RNA biology.

[40]  R. Batey,et al.  B12 cofactors directly stabilize an mRNA regulatory switch , 2012, Nature.

[41]  B. Suess Engineered riboswitches control gene expression by small molecules. , 2005, Biochemical Society transactions.

[42]  T. Hermann,et al.  RNA as a target for small-molecule therapeutics , 2005 .

[43]  R. Breaker,et al.  Riboswitches that sense S-adenosylmethionine and S-adenosylhomocysteine. , 2008, Biochemistry and cell biology = Biochimie et biologie cellulaire.

[44]  G. Fox,et al.  Frequent occurrence of the T-loop RNA folding motif in ribosomal RNAs. , 2002, RNA.

[45]  Eduardo A. Groisman,et al.  An RNA Sensor for Intracellular Mg2+ , 2006, Cell.

[46]  A. Serganov,et al.  Long-range pseudoknot interactions dictate the regulatory response in the tetrahydrofolate riboswitch , 2011, Proceedings of the National Academy of Sciences.

[47]  Jeffrey E. Barrick,et al.  New RNA motifs suggest an expanded scope for riboswitches in bacterial genetic control. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[48]  A. Serganov,et al.  Metabolite recognition principles and molecular mechanisms underlying riboswitch function. , 2012, Annual review of biophysics.

[49]  C. Yanofsky Attenuation in the control of expression of bacterial operons , 1981, Nature.

[50]  Kathryn D. Smith,et al.  Structural basis of ligand binding by a c-di-GMP riboswitch , 2009, Nature Structural &Molecular Biology.

[51]  Margaret S. Ebert,et al.  An mRNA structure in bacteria that controls gene expression by binding lysine. , 2003, Genes & development.

[52]  R. Breaker,et al.  A variant riboswitch aptamer class for S-adenosylmethionine common in marine bacteria. , 2009, RNA.

[53]  J. Szostak,et al.  In vitro selection of RNA molecules that bind specific ligands , 1990, Nature.

[54]  Jeffrey E. Barrick,et al.  Evidence for a second class of S-adenosylmethionine riboswitches and other regulatory RNA motifs in alpha-proteobacteria , 2005, Genome Biology.

[55]  M. Gelfand,et al.  Regulation of lysine biosynthesis and transport genes in bacteria: yet another RNA riboswitch? , 2003, Nucleic acids research.

[56]  R. Breaker,et al.  Riboswitch Control of Gene Expression in Plants by Splicing and Alternative 3′ End Processing of mRNAs[W][OA] , 2007, The Plant Cell Online.

[57]  A. Serganov,et al.  Structural insights into ligand recognition by a sensing domain of the cooperative glycine riboswitch. , 2010, Molecular cell.

[58]  R. Breaker,et al.  Adenine riboswitches and gene activation by disruption of a transcription terminator , 2004, Nature Structural &Molecular Biology.

[59]  Yong Xiong,et al.  Structural basis of cooperative ligand binding by the glycine riboswitch. , 2011, Chemistry & biology.

[60]  A. Serganov,et al.  Structural basis for discriminative regulation of gene expression by adenine- and guanine-sensing mRNAs. , 2004, Chemistry & biology.

[61]  Vitaly Epshtein,et al.  The riboswitch-mediated control of sulfur metabolism in bacteria , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[62]  C. Buchrieser,et al.  A trans-Acting Riboswitch Controls Expression of the Virulence Regulator PrfA in Listeria monocytogenes , 2009, Cell.

[63]  A. Serganov,et al.  Structural principles of nucleoside selectivity in a 2′-deoxyguanosine riboswitch , 2011, Nature chemical biology.

[64]  Thomas Hermann,et al.  Structure-Guided Discovery of Novel Aminoglycoside Mimetics as Antibacterial Translation Inhibitors , 2005, Antimicrobial Agents and Chemotherapy.

[65]  R. Breaker,et al.  Bacterial aptamers that selectively bind glutamine , 2011, RNA biology.

[66]  N. Seeman,et al.  Three-Dimensional Tertiary Structure of Yeast Phenylalanine Transfer RNA , 1974, Science.

[67]  A. Serganov,et al.  Structural basis for gene regulation by a thiamine pyrophosphate-sensing riboswitch , 2006, Nature.

[68]  Kathryn D. Smith,et al.  Structural basis of differential ligand recognition by two classes of bis-(3′-5′)-cyclic dimeric guanosine monophosphate-binding riboswitches , 2011, Proceedings of the National Academy of Sciences.

[69]  Andrea L Edwards,et al.  Structural basis for recognition of S-adenosylhomocysteine by riboswitches. , 2010, RNA.

[70]  T. Henkin,et al.  SAM recognition and conformational switching mechanism in the Bacillus subtilis yitJ S box/SAM-I riboswitch. , 2010, Journal of molecular biology.

[71]  J. Wedekind,et al.  Single transcriptional and translational preQ1 riboswitches adopt similar pre-folded ensembles that follow distinct folding pathways into the same ligand-bound structure , 2013, Nucleic acids research.

[72]  R. Montange,et al.  Structure of the S-adenosylmethionine riboswitch regulatory mRNA element , 2006, Nature.

[73]  R. Batey,et al.  A structural basis for the recognition of 2'-deoxyguanosine by the purine riboswitch. , 2009, Journal of molecular biology.

[74]  Zasha Weinberg,et al.  An Allosteric Self-Splicing Ribozyme Triggered by a Bacterial Second Messenger , 2010, Science.

[75]  T. Henkin,et al.  tRNA as a positive regulator of transcription antitermination in B. subtilis , 1993, Cell.

[76]  A. Serganov The long and the short of riboswitches. , 2009, Current opinion in structural biology.

[77]  Harald Schwalbe,et al.  Three-state mechanism couples ligand and temperature sensing in riboswitches , 2013, Nature.

[78]  T. Steitz,et al.  The kink‐turn: a new RNA secondary structure motif , 2001, The EMBO journal.

[79]  A. Serganov,et al.  Towards deciphering the principles underlying an mRNA recognition code. , 2008, Current opinion in structural biology.

[80]  D. Lilley,et al.  Folding of the adenine riboswitch. , 2006, Chemistry & biology.

[81]  R. Breaker,et al.  An mRNA structure that controls gene expression by binding FMN , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[82]  D. Lilley,et al.  Novel Ligands for a Purine Riboswitch Discovered by RNA-Ligand Docking , 2011, Chemistry & biology.

[83]  Ryan T Fuchs,et al.  The SAM‐responsive SMK box is a reversible riboswitch , 2010, Molecular microbiology.

[84]  R. Breaker Prospects for riboswitch discovery and analysis. , 2011, Molecular cell.

[85]  T. Henkin,et al.  Transcription termination control of the S box system: Direct measurement of S-adenosylmethionine by the leader RNA , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[86]  R. Breaker,et al.  Control of gene expression by a natural metabolite-responsive ribozyme , 2004, Nature.

[87]  Jun Feng,et al.  Cooperative and directional folding of the preQ1 riboswitch aptamer domain. , 2011, Journal of the American Chemical Society.

[88]  R. Batey,et al.  Crystal Structure of the Lysine Riboswitch Regulatory mRNA Element* , 2008, Journal of Biological Chemistry.

[89]  J. Wedekind,et al.  Riboswitch structure in the ligand‐free state , 2012, Wiley interdisciplinary reviews. RNA.

[90]  Vitaly Epshtein,et al.  Riboswitch control of Rho-dependent transcription termination , 2012, Proceedings of the National Academy of Sciences.

[91]  R. Batey,et al.  Structure of the SAM-II riboswitch bound to S-adenosylmethionine , 2008, Nature Structural &Molecular Biology.

[92]  Robert T. Batey,et al.  Engineering modular ‘ON’ RNA switches using biological components , 2013, Nucleic acids research.

[93]  Zasha Weinberg,et al.  The aptamer core of SAM-IV riboswitches mimics the ligand-binding site of SAM-I riboswitches. , 2008, RNA.

[94]  A. Serganov,et al.  Coenzyme recognition and gene regulation by a flavin mononucleotide riboswitch , 2009, Nature.

[95]  Thomas Hermann,et al.  Drugs targeting the ribosome. , 2005, Current opinion in structural biology.

[96]  É. Massé,et al.  Dual-acting riboswitch control of translation initiation and mRNA decay , 2012, Proceedings of the National Academy of Sciences.

[97]  M. Muraki The importance of CH/pi interactions to the function of carbohydrate binding proteins. , 2002, Protein and peptide letters.

[98]  Zasha Weinberg,et al.  Widespread Genetic Switches and Toxicity Resistance Proteins for Fluoride , 2012, Science.

[99]  H. Al‐Hashimi,et al.  RNA dynamics: it is about time. , 2008, Current opinion in structural biology.

[100]  W. L. Ruzzo,et al.  A widespread riboswitch candidate that controls bacterial genes involved in molybdenum cofactor and tungsten cofactor metabolism , 2008, Molecular microbiology.

[101]  A. Ferré-D’Amaré,et al.  Cocrystal structure of a class I preQ1 riboswitch reveals a pseudoknot recognizing an essential hypermodified nucleobase , 2009, Nature Structural &Molecular Biology.

[102]  T. Henkin Riboswitch RNAs: using RNA to sense cellular metabolism. , 2008, Genes & development.

[103]  Jeffrey E. Barrick,et al.  Riboswitches Control Fundamental Biochemical Pathways in Bacillus subtilis and Other Bacteria , 2003, Cell.

[104]  J. Wedekind,et al.  Comparison of a PreQ1 Riboswitch Aptamer in Metabolite-bound and Free States with Implications for Gene Regulation* , 2011, The Journal of Biological Chemistry.

[105]  R. Batey,et al.  Insights into the regulatory landscape of the lysine riboswitch. , 2012, Journal of molecular biology.

[106]  T. Henkin,et al.  The L box regulon: Lysine sensing by leader RNAs of bacterial lysine biosynthesis genes , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[107]  R. Micura,et al.  The dynamic nature of RNA as key to understanding riboswitch mechanisms. , 2011, Accounts of chemical research.

[108]  Sebastian Doniach,et al.  Structural transitions and thermodynamics of a glycine-dependent riboswitch from Vibrio cholerae. , 2007, Journal of molecular biology.

[109]  B. Blencowe,et al.  Molecular biology: RNA in control , 2007, Nature.

[110]  A. Serganov,et al.  A Decade of Riboswitches , 2013, Cell.

[111]  D. Lafontaine,et al.  Molecular insights into the ligand-controlled organization of the SAM-I riboswitch. , 2011, Nature chemical biology.

[112]  A. Serganov,et al.  Molecular recognition and function of riboswitches. , 2012, Current opinion in structural biology.

[113]  R. Batey,et al.  The structure of a tetrahydrofolate-sensing riboswitch reveals two ligand binding sites in a single aptamer. , 2011, Structure.

[114]  Zasha Weinberg,et al.  A Glycine-Dependent Riboswitch That Uses Cooperative Binding to Control Gene Expression , 2004, Science.

[115]  Mohammad Salim,et al.  Structure of a class II preQ1 riboswitch reveals ligand recognition by a new fold , 2013, Nature chemical biology.

[116]  A. Ferré-D’Amaré,et al.  Crystal structures of the thi-box riboswitch bound to thiamine pyrophosphate analogs reveal adaptive RNA-small molecule recognition. , 2006, Structure.

[117]  Vahe Bandarian,et al.  The Structural Basis for Recognition of the PreQ0 Metabolite by an Unusually Small Riboswitch Aptamer Domain*♦ , 2009, Journal of Biological Chemistry.

[118]  Ronald R. Breaker,et al.  Guanine riboswitch variants from Mesoplasma florum selectively recognize 2′-deoxyguanosine , 2007, Proceedings of the National Academy of Sciences.

[119]  A. S. Krasilnikov,et al.  On the occurrence of the T-loop RNA folding motif in large RNA molecules. , 2003, RNA.

[120]  A. Serganov,et al.  Structural insights into amino acid binding and gene control by a lysine riboswitch , 2008, Nature.

[121]  E. Westhof,et al.  Topology of three-way junctions in folded RNAs. , 2006, RNA.

[122]  É. Massé,et al.  Comparative Study between Transcriptionally- and Translationally-Acting Adenine Riboswitches Reveals Key Differences in Riboswitch Regulatory Mechanisms , 2011, PLoS genetics.

[123]  Jeffrey E. Barrick,et al.  Tandem Riboswitch Architectures Exhibit Complex Gene Control Functions , 2006, Science.

[124]  Joy Sinha,et al.  Reprogramming Bacteria to Seek and Destroy a Herbicide , 2010, Nature chemical biology.

[125]  J. Sühnel,et al.  C-h⋯π-interactions in proteins , 2001 .

[126]  Q. Vicens RNA’s coming of age as a drug target , 2009 .

[127]  Catherine A. Wakeman,et al.  Structure and Mechanism of a Metal-Sensing Regulatory RNA , 2007, Cell.

[128]  Jeffrey E. Barrick,et al.  The distributions, mechanisms, and structures of metabolite-binding riboswitches , 2007, Genome Biology.

[129]  A. Ferré-D’Amaré,et al.  Idiosyncratically tuned switching behavior of riboswitch aptamer domains revealed by comparative small-angle X-ray scattering analysis. , 2010, RNA.

[130]  Gerald F. Joyce,et al.  Selection in vitro of an RNA enzyme that specifically cleaves single-stranded DNA , 1990, Nature.

[131]  E. Nudler,et al.  The riboswitch control of bacterial metabolism. , 2004, Trends in biochemical sciences.

[132]  R. Breaker,et al.  Riboswitches in Eubacteria Sense the Second Messenger Cyclic Di-GMP , 2008, Science.

[133]  Tina M. Henkin,et al.  Natural Variability in S-Adenosylmethionine (SAM)-Dependent Riboswitches: S-Box Elements in Bacillus subtilis Exhibit Differential Sensitivity to SAM In Vivo and In Vitro , 2007, Journal of bacteriology.

[134]  Thomas A. Steitz,et al.  RNA tertiary interactions in the large ribosomal subunit: The A-minor motif , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[135]  R. Batey,et al.  Modularity of select riboswitch expression platforms enables facile engineering of novel genetic regulatory devices. , 2013, ACS synthetic biology.

[136]  Pascale Cossart,et al.  A riboswitch-regulated antisense RNA in Listeria monocytogenes , 2013, Proceedings of the National Academy of Sciences.

[137]  R. Batey Structure and mechanism of purine-binding riboswitches , 2012, Quarterly Reviews of Biophysics.

[138]  Ronald R. Breaker,et al.  Thiamine derivatives bind messenger RNAs directly to regulate bacterial gene expression , 2002, Nature.

[139]  R. Micura,et al.  Tuning a riboswitch response through structural extension of a pseudoknot , 2013, Proceedings of the National Academy of Sciences.

[140]  Samuel Bocobza,et al.  Riboswitch-dependent gene regulation and its evolution in the plant kingdom. , 2007, Genes & development.

[141]  L. Gold,et al.  Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. , 1990, Science.

[142]  R. Breaker,et al.  Purine sensing by riboswitches , 2008, Biology of the cell.

[143]  Ali Nahvi,et al.  Genetic control by a metabolite binding mRNA. , 2002, Chemistry & biology.

[144]  R. Breaker,et al.  Regulation of bacterial gene expression by riboswitches. , 2005, Annual review of microbiology.

[145]  D. Crothers,et al.  The speed of RNA transcription and metabolite binding kinetics operate an FMN riboswitch. , 2005, Molecular cell.

[146]  T. Cech,et al.  In vitro splicing of the ribosomal RNA precursor of tetrahymena: Involvement of a guanosine nucleotide in the excision of the intervening sequence , 1981, Cell.

[147]  A. Ferré-D’Amaré,et al.  Recognition of the bacterial second messenger cyclic diguanylate by its cognate riboswitch , 2009, Nature Structural &Molecular Biology.

[148]  A. Ferré-D’Amaré,et al.  Structural Basis of glmS Ribozyme Activation by Glucosamine-6-Phosphate , 2006, Science.