(Li6 Si5 )2-5 : The Smallest Cluster-Assembled Materials Based on Aromatic Si5 6- Rings.

Extensive explorations of their potential energy surfaces, combined with high-level quantum chemical computations, strikingly show that the lowest energy structures of the (Li6 Si5 )2-5 systems consist of 2-5 Si5 6- aromatic units, surrounded by Li+ counterions, respectively. These viable gas-phase compounds are the pioneering reported cases of oligomers made by planar aromatic silicon rings. Based on the key evidence that these oligomers are energetically favored, and that their silicon rings aromaticity is thoroughly preserved, the Li6 Si5 cluster is proposed as a potential assembly unit to build silicon-lithium nanostructures, thus opening new paths to design Zintl compounds at the nanoscale level.

[1]  G. Seifert,et al.  The induced magnetic field in cyclic molecules. , 2004, Chemistry.

[2]  Jianfeng Li,et al.  Isolation of R6Si6 Dianion: A Bridged Tricyclic Isomer of Dianionic Hexasilabenzene. , 2018, Journal of the American Chemical Society.

[3]  T. Heine,et al.  The induced magnetic field. , 2012, Accounts of chemical research.

[4]  S. Maeda,et al.  Designing the Backbone of Hexasilabenzene Derivatives with a High Unimolecular Kinetic Stability. , 2018, Chemistry.

[5]  P. Heitjans,et al.  Li NMR spectroscopy on crystalline Li12Si7: experimental evidence for the aromaticity of the planar cyclopentadienyl-analogous Si5(6-) rings. , 2011, Angewandte Chemie.

[6]  V. Barone,et al.  Toward reliable density functional methods without adjustable parameters: The PBE0 model , 1999 .

[7]  Kenneth B. Wiberg,et al.  Application of the pople-santry-segal CNDO method to the cyclopropylcarbinyl and cyclobutyl cation and to bicyclobutane , 1968 .

[8]  R. Nesper,et al.  Li12Si7, a Compound Having a Trigonal Planar Si4 Cluster and Planar Si5 Rings , 1980 .

[9]  S. Khanna,et al.  Physics of cluster assembled materials , 1996 .

[10]  F. Weigend,et al.  Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. , 2005, Physical chemistry chemical physics : PCCP.

[11]  Paul S Weiss,et al.  Cluster-assembled materials. , 2009, ACS nano.

[12]  Jena,et al.  Assembling crystals from clusters. , 1992, Physical review letters.

[13]  A. J. Morris,et al.  Resolving the different silicon clusters in Li12Si7 by 29Si and (6,7)Li solid-state NMR spectroscopy. , 2011, Angewandte Chemie.

[14]  J. Michl,et al.  Tetramesityldisilene, a Stable Compound Containing a Silicon-Silicon Double Bond , 1981, Science.

[15]  J. Gauss,et al.  Calculation of spin-current densities using gauge-including atomic orbitals , 2004 .

[16]  Hermann Stoll,et al.  Pseudopotentials for main group elements (IIIa through VIIa) , 1988 .

[17]  R. Nesper,et al.  Li12Si7, eine Verbindung mit trigonal‐planaren Si4‐Clustern und isometrischen Si5‐Ringen , 1986 .

[18]  Alexander I Boldyrev,et al.  Developing paradigms of chemical bonding: adaptive natural density partitioning. , 2008, Physical chemistry chemical physics : PCCP.

[19]  E. Glendening,et al.  Natural resonance theory: II. Natural bond order and valency , 1998 .

[20]  Jesus M. Ugalde,et al.  Designing 3-D molecular stars. , 2009, Journal of the American Chemical Society.

[21]  Matthew A. Addicoat,et al.  Kick: Constraining a stochastic search procedure with molecular fragments , 2009, J. Comput. Chem..

[22]  R. Nesper,et al.  Tight-binding approach to the solid-state structure of the complex Zintl-phase Li 12 Si 7 , 1984 .

[23]  Michael Dolg,et al.  Ab initio energy-adjusted pseudopotentials for elements of groups 13-17 , 1993 .

[24]  Julio Caballero,et al.  Minimizing the risk of reporting false aromaticity and antiaromaticity in inorganic heterocycles following magnetic criteria. , 2014, Inorganic chemistry.

[25]  Anastassia N Alexandrova,et al.  Search for the Lin(0/+1/-1) (n = 5-7) Lowest-Energy Structures Using the ab Initio Gradient Embedded Genetic Algorithm (GEGA). Elucidation of the Chemical Bonding in the Lithium Clusters. , 2005, Journal of chemical theory and computation.

[26]  William Tiznado,et al.  Stabilizing carbon-lithium stars. , 2011, Physical chemistry chemical physics : PCCP.

[27]  Lai‐Sheng Wang,et al.  Multiple aromaticity and antiaromaticity in silicon clusters. , 2004, Chemphyschem : a European journal of chemical physics and physical chemistry.

[28]  R. Nesper,et al.  Li12Si7, eine Verbindung mit trigonal‐planarem Si4‐Cluster und planaren Si5‐Ringen , 1980 .

[29]  Dage Sundholm,et al.  Calculations of magnetically induced current densities: theory and applications , 2016 .

[30]  A. Alexandrova H·(H2O)n clusters: microsolvation of the hydrogen atom via molecular ab initio gradient embedded genetic algorithm (GEGA). , 2010, The journal of physical chemistry. A.

[31]  H. Rzepa,et al.  A Tricyclic Aromatic Isomer of Hexasilabenzene , 2010, Science.

[32]  D. Zubarev,et al.  Revealing intuitively assessable chemical bonding patterns in organic aromatic molecules via adaptive natural density partitioning. , 2008, The Journal of organic chemistry.

[33]  Martin Wilkening,et al.  Li-NMR-Spektroskopie an kristallinem Li12Si7: zur Aromatizität planarer, Cyclopentadienyl-analoger Si56−-Ringe† , 2011 .

[34]  William Tiznado,et al.  E5 M7+ (E=C-Pb, M=Li-Cs): A Source of Viable Star-Shaped Clusters. , 2018, Chemistry, an Asian journal.

[35]  Xin Yang,et al.  Structure of the Na(x)Cl(x+1) (-) (x=1-4) clusters via ab initio genetic algorithm and photoelectron spectroscopy. , 2004, The Journal of chemical physics.

[36]  S. Grimme,et al.  A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. , 2010, The Journal of chemical physics.

[37]  H. Gilman,et al.  Relationships between Analgous Organic Compounds of Silicon and Carbon. , 1953 .

[38]  B. Rao,et al.  Stability and Electronic Structure of Cluster Assembled Materials , 1996 .

[39]  R. Nesper,et al.  Li8MgSi6, a novel Zintl compound containing quasi-aromatic Si5 rings , 1986 .

[40]  Qiang Sun,et al.  Super Atomic Clusters: Design Rules and Potential for Building Blocks of Materials. , 2018, Chemical reviews.

[41]  Jena,et al.  Atomic clusters: Building blocks for a class of solids. , 1995, Physical review. B, Condensed matter.

[42]  William Tiznado,et al.  Isomerization energy decomposition analysis for highly ionic systems: case study of starlike E5Li7(+) clusters. , 2013, Chemistry.