A simulation model for the density of states and for incomplete ionization in crystalline silicon. II. Investigation of Si:As and Si:B and usage in device simulation

Building on Part I of this paper [Altermatt et al., J. Appl. Phys. 100, 113714 (2006)], the parametrization of the density of states and of incomplete ionization (ii) is extended to arsenic- and boron-doped crystalline silicon. The amount of ii is significantly larger in Si:As than in Si:P. Boron and phosphorus cause a similar amount of ii although the boron energy level has a distinctly different behavior as a function of dopant density than the phosphorus level. This is so because the boron ground state is fourfold degenerate, while the phosphorus ground state is twofold degenerate. Finally, equations of ii are derived that are suitable for implementation in device simulators. Simulations demonstrate that ii increases the current gain of bipolar transistors by up to 25% and that it decreases the open-circuit voltage of thin-film solar cells by up to 10mV. The simulation model therefore improves the predictive capabilities of device modeling of p‐n-junction devices.

[1]  G. A. Shifrin,et al.  Electrical Behavior of Group III and V Implanted Dopants in Silicon , 1969 .

[2]  M. Severi,et al.  Electrical Properties of Thermally and Laser Annealed Polycrystalline Silicon Films Heavily Doped with Arsenic and Phosphorus , 1982 .

[3]  D. E. Cullen,et al.  TUNNELING SPECTROSCOPY IN DEGENERATE p-TYPE SILICON, , 1970 .

[4]  M. Tajima,et al.  Calibration of the Photoluminescence Method for Determining As and Al Concentrations in Si , 1990 .

[5]  R. Anderson,et al.  Carrier freezeout in silicon , 1990 .

[6]  M. Naughton,et al.  The low temperature magnetoresistance of arsenic-doped silicon near the metal—Insulator transition , 1985 .

[7]  Zhang,et al.  Critical conductivity exponent for Si:B. , 1991, Physical review letters.

[8]  M. Brinson,et al.  Thermal conductivity and thermoelectric power of heavily doped n-type silicon , 1970 .

[9]  S. S. Li,et al.  An Improved Model for Analyzing Hole Mobility and Resistivity in p‐Type Silicon Doped with Boron, Gallium, and Indium , 1981 .

[10]  A. Silva Impurity conductivities in compensated semiconductor systems. , 1993 .

[11]  M. Thewalt,et al.  Dependence of the ionization energy of shallow donors and acceptors in silicon on the host isotopic mass , 2003 .

[12]  P. Altermatt,et al.  A simulation model for the density of states and for incomplete ionization in crystalline silicon. I. Establishing the model in Si:P , 2006 .

[13]  A. Ghazali,et al.  From band tailing to impurity-band formation and discussion of localization in doped semiconductors: A multiple-scattering approach , 1983 .

[14]  A. Ramdas,et al.  Spin–orbit coupling, mass anisotropy, time-reversal symmetry, and spontaneous symmetry breaking in the spectroscopy of shallow centers in elemental semiconductors , 2001 .

[15]  T. H. Ning,et al.  Multivalley Effective-Mass Approximation for Donor States in Silicon. I. Shallow-Level Group-V Impurities , 1971 .

[16]  E. Abramof,et al.  Metal-nonmetal transition and resistivity of silicon implanted with bismuth , 1997 .

[17]  D. K. Schroder,et al.  The doping concentrations of indium‐doped silicon measured by Hall, C‐V, and junction‐breakdown techniques , 1978 .

[18]  H. I. Ralph,et al.  Central-cell corrections to the theory of ionized-impurity scattering of electrons in silicon , 1975 .

[19]  Electronic states near the metal-insulator transition in neutron irradiated Si:P , 1991 .

[20]  The compensation effect in the impurity band of doped semiconductors , 1988 .

[21]  E. Abramof,et al.  Transport properties of silicon implanted with bismuth , 1997 .

[22]  K. B. Wolfstirn Hole and electron mobilities in doped silicon from radiochemical and conductivity measurements , 1960 .

[23]  S. Li,et al.  Theoretical analysis of hall factor and hall mobility in p-type silicon☆ , 1981 .

[24]  A. Silva Metal-Non-metal Transition in the Double-Donors Si:P, As and Si:P, Sb: A Simple Approach , 1986 .

[25]  H. R. Chandrasekhar,et al.  Quantitative Piezospectroscopy of the Ground and Excited States of Acceptors in Silicon , 1973 .

[26]  G. Backenstoss,et al.  Conductivity Mobilities of Electrons and Holes in Heavily Doped Silicon , 1957 .

[27]  M. Thewalt,et al.  Photoluminescence in heavily doped Si: B and Si: As , 1981 .

[28]  F. Fontaine Calculation of the hole concentration in boron-doped diamond , 1999 .

[29]  Siegfried Selberherr,et al.  INFLUENCE OF THE DOPING ELEMENT ON THE ELECTRON MOBILITY IN N-SILICON , 1998 .

[30]  R. Jones,et al.  Mobility and carrier density of rapid isothermally annealed antimony implanted (100) and (111) silicon , 1985 .

[31]  M. Konuma,et al.  "Intrinsic" acceptor ground state splitting in silicon: an isotopic effect. , 2002, Physical review letters.

[32]  F. J. Morin,et al.  Electrical Properties of Silicon Containing Arsenic and Boron , 1954 .

[33]  A. Silva Theoretical electronic properties of silicon‐containing bismuth , 1994 .

[34]  G. Swartz Low-temperature hall coefficient and conductivity in heavily doped silicon , 1960 .

[35]  A. K. Ramdas,et al.  Optical Determination of the Symmetry of the Ground States of Group-V Donors in Silicon , 1965 .

[36]  K. Tseng,et al.  Piezoelectric transformer with high power density and multiple outputs , 2004 .

[37]  G. A. Thomas,et al.  Metal-insulator transition in a doped semiconductor , 1983 .

[38]  Y. Ochiai,et al.  Metal‐Semiconductor Transition in Heavily Doped n–Type Silicon , 1975 .

[39]  W. Scott,et al.  Infrared spectra of new acceptor levels in boron‐doped and gallium‐doped silicon , 1979 .

[40]  H. S. Luftman,et al.  Doping of Si thin films by low‐temperature molecular beam epitaxy , 1993 .

[41]  Photoluminescence of heavily doped, compensated Si:P,B. , 1994, Physical review. B, Condensed matter.

[42]  A. Lin Temperature dependence of Hall effect in arsenic‐doped silicon at intermediate dopant density , 1988 .

[43]  Hirsch Mj,et al.  ESR studies of compensated Si:P,B near the metal-insulator transition. , 1992 .

[44]  H. Iwai,et al.  An 0.3-/spl mu/m Si epitaxial base BiCMOS technology with 37-GHz f/sub max/ and 10-V BV/sub ceo/ for RF telecommunication , 1999 .

[45]  S. Laux,et al.  Comment on “Influence of the doping element on the electron mobility in n silicon” [J. Appl. Phys. 83, 3096 (1998)] , 1999 .

[46]  J. J. Rome,et al.  Additional structure in infrared excitation spectra of group-III acceptors in silicon , 1983 .

[47]  Y. Sasaki,et al.  A new experimental determination of the relationship between the Hall mobility and the hole concentration in heavily doped p-type silicon , 1988 .

[48]  Wagner Band-gap narrowing in heavily doped silicon at 20 and 300 K studied by photoluminescence. , 1985, Physical review. B, Condensed matter.

[49]  Y. Furukawa Impurity Effect upon Mobility in Heavily Doped Silicon , 1961 .

[50]  A. Gasparotto,et al.  Hole mobility in aluminium implanted silicon , 1997 .

[51]  D. F. Holcomb,et al.  A calibration curve for room‐temperature resistivity versus donor atom concentration in Si:As , 1985 .

[52]  J. F. Gilbert,et al.  Electron Mobilities and Tunneling Currents in Silicon , 1961 .

[53]  Metal-insulator transition in the compensated semiconductor Si:(P,B). , 1992, Physical review. B, Condensed matter.