Interactive hair rendering and appearance editing under environment lighting

We present an interactive algorithm for hair rendering and appearance editing under complex environment lighting represented as spherical radial basis functions (SRBFs). Our main contribution is to derive a compact 1D circular Gaussian representation that can accurately model the hair scattering function introduced by [Marschner et al. 2003]. The primary benefit of this representation is that it enables us to evaluate, at run-time, closed-form integrals of the scattering function with each SRBF light, resulting in efficient computation of both single and multiple scatterings. In contrast to previous work, our algorithm computes the rendering integrals entirely on the fly and does not depend on expensive pre-computation. Thus we allow the user to dynamically change the hair scattering parameters, which can vary spatially. Analyses show that our 1D circular Gaussian representation is both accurate and concise. In addition, our algorithm incorporates the eccentricity of the hair. We implement our algorithm on the GPU, achieving interactive hair rendering and simultaneous appearance editing under complex environment maps for the first time.

[1]  Steve Marschner,et al.  Capturing hair assemblies fiber by fiber , 2009, SIGGRAPH 2009.

[2]  Milton Abramowitz,et al.  Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables , 1964 .

[3]  Henrik Wann Jensen,et al.  An artist friendly hair shading system , 2010, ACM Trans. Graph..

[4]  Jan Kautz,et al.  A self-shadow algorithm for dynamic hair using density clustering , 2004, SIGGRAPH '04.

[5]  Arno Zinke,et al.  Light Scattering from Filaments , 2007, IEEE Transactions on Visualization and Computer Graphics.

[6]  Kun Zhou,et al.  Interactive relighting with dynamic BRDFs , 2007, SIGGRAPH 2007.

[7]  Kun Zhou,et al.  Interactive hair rendering under environment lighting , 2010, SIGGRAPH 2010.

[8]  Steve Marschner,et al.  A Survey on Hair Modeling: Styling, Simulation, and Rendering , 2007, IEEE Transactions on Visualization and Computer Graphics.

[9]  S. Marschner,et al.  Efficient multiple scattering in hair using spherical harmonics , 2008, SIGGRAPH 2008.

[10]  Ravi Ramamoorthi,et al.  Real-time BRDF editing in complex lighting , 2006, SIGGRAPH 2006.

[11]  Steve Marschner,et al.  Light scattering from human hair fibers , 2003, ACM Trans. Graph..

[12]  Ravi Ramamoorthi,et al.  Real-time BRDF editing in complex lighting , 2006, ACM Trans. Graph..

[13]  Steve Marschner,et al.  Capturing hair assemblies fiber by fiber , 2009, ACM Trans. Graph..

[14]  Kun Zhou,et al.  Interactive hair rendering under environment lighting , 2010 .

[15]  Jitendra Malik,et al.  Recovering high dynamic range radiance maps from photographs , 1997, SIGGRAPH '08.

[16]  Yue Gao,et al.  Real‐time homogenous translucent material editing , 2007, Comput. Graph. Forum.

[17]  Ulrich Neumann,et al.  Opacity Shadow Maps , 2001, Rendering Techniques.

[18]  Reinhard Klein,et al.  A practical approach for photometric acquisition of hair color , 2009, ACM Trans. Graph..

[19]  Zen-Chung Shih,et al.  All-frequency precomputed radiance transfer using spherical radial basis functions and clustered tensor approximation , 2006, ACM Trans. Graph..

[20]  Tom Lokovic,et al.  Deep shadow maps , 2000, SIGGRAPH.

[21]  S. Marschner,et al.  Simulating multiple scattering in hair using a photon mapping approach , 2006, SIGGRAPH 2006.

[22]  Baining Guo,et al.  All-frequency rendering of dynamic, spatially-varying reflectance , 2009, ACM Trans. Graph..

[23]  Cem Yuksel,et al.  Dual scattering approximation for fast multiple scattering in hair , 2008, SIGGRAPH 2008.

[24]  Cem Yuksel,et al.  Deep Opacity Maps , 2008, Comput. Graph. Forum.

[25]  Reinhard Klein,et al.  A practical approach for photometric acquisition of hair color , 2009, SIGGRAPH 2009.

[26]  John M. Snyder,et al.  All-frequency rendering of dynamic, spatially-varying reflectance , 2009, SIGGRAPH 2009.

[27]  Christophe Schlick,et al.  An Inexpensive BRDF Model for Physically‐based Rendering , 1994, Comput. Graph. Forum.

[28]  Ulf Assarsson,et al.  Hair self shadowing and transparency depth ordering using occupancy maps , 2009, I3D '09.

[29]  James T. Kajiya,et al.  Rendering fur with three dimensional textures , 1989, SIGGRAPH.

[30]  Kei Iwasaki,et al.  A Simplified Plane-Parallel Scattering Model and Its Application to Hair Rendering , 2010, 2010 18th Pacific Conference on Computer Graphics and Applications.

[31]  Frédo Durand,et al.  Hair photobooth: geometric and photometric acquisition of real hairstyles , 2008, ACM Trans. Graph..

[32]  Martin Hill,et al.  Eurographics Symposium on Rendering 2011 an Energy-conserving Hair Reflectance Model , 2022 .

[33]  Francisco J. Serón,et al.  Interactive HDR lighting of dynamic participating media , 2009, The Visual Computer.

[34]  John Hart,et al.  ACM Transactions on Graphics , 2004, SIGGRAPH 2004.

[35]  Tomoyuki Nishita,et al.  Curling and clumping fur represented by texture layers , 2010, The Visual Computer.

[36]  Kun Zhou,et al.  Interactive relighting of dynamic refractive objects , 2008, SIGGRAPH 2008.

[37]  Cem Yuksel,et al.  Dual scattering approximation for fast multiple scattering in hair , 2008, ACM Trans. Graph..

[38]  Arno Zinke,et al.  Ibero-american Symposium on Computer Graphics -siacg (2006) Global Illumination for Fiber Based Geometries , 2022 .

[39]  Andrew Selle,et al.  To appear in the ACM SIGGRAPH conference proceedings A Mass Spring Model for Hair Simulation , 2008 .

[40]  Hujun Bao,et al.  Real-time editing and relighting of homogeneous translucent materials , 2008, The Visual Computer.

[41]  Kun Zhou,et al.  Interactive relighting of dynamic refractive objects , 2008, ACM Trans. Graph..

[42]  Frédo Durand,et al.  Efficient Reflectance and Visibility Approximations for Environment Map Rendering , 2007, Comput. Graph. Forum.

[43]  Steve Marschner,et al.  Efficient multiple scattering in hair using spherical harmonics , 2008, ACM Trans. Graph..

[44]  Frédo Durand,et al.  Single Photo Estimation of Hair Appearance , 2009 .

[45]  Steve Marschner,et al.  Simulating multiple scattering in hair using a photon mapping approach , 2006, ACM Trans. Graph..

[46]  Ulf Assarsson,et al.  Real-time approximate sorting for self shadowing and transparency in hair rendering , 2008, I3D '08.

[47]  Frédo Durand,et al.  Hair photobooth , 2008, SIGGRAPH 2008.