Assessment of nitrogen–fluorine-codoped TiO2 under visible light for degradation of BPA: Implication for field remediation

[1]  H. Hwang,et al.  An in vivo study on the photo-enhanced toxicities of S-doped TiO2 nanoparticles to zebrafish embryos (Danio rerio) in terms of malformation, mortality, rheotaxis dysfunction, and DNA damage , 2014, Nanotoxicology.

[2]  Juan-Yu Yang,et al.  Efficient Visible-Light-Driven Photocatalytic Degradation with Bi2O3 Coupling Silica Doped TiO2 , 2014 .

[3]  S. Pillai,et al.  Evaluating the Mechanism of Visible Light Activity for N,F-TiO2 Using Photoelectrochemistry , 2014 .

[4]  J. Leszczynski,et al.  Using a holistic approach to assess the impact of engineered nanomaterials inducing toxicity in aquatic systems , 2014, Journal of food and drug analysis.

[5]  C. D'Andrea,et al.  Fluorine-Doped TiO2 Materials: Photocatalytic Activity vs Time-Resolved Photoluminescence , 2013 .

[6]  D. Dionysiou,et al.  Photoinactivation of Escherichia coli by sulfur-doped and nitrogen-fluorine-codoped TiO2 nanoparticles under solar simulated light and visible light irradiation. , 2013, Environmental science & technology.

[7]  G. Pacchioni,et al.  Trends in non-metal doping of anatase TiO2: B, C, N and F , 2013 .

[8]  P. Campo,et al.  Photocatalytic degradation of contaminants of concern with composite NF-TiO2 films under visible and solar light , 2013, Environmental Science and Pollution Research.

[9]  M. Paganini,et al.  Mechanism of the Photoactivity under Visible Light of N-Doped Titanium Dioxide. Charge Carriers Migration in Irradiated N-TiO2 Investigated by Electron Paramagnetic Resonance. , 2012 .

[10]  M. Seery,et al.  A review on the visible light active titanium dioxide photocatalysts for environmental applications , 2012 .

[11]  D. Dionysiou,et al.  A comparative study on the removal of cylindrospermopsin and microcystins from water with NF-TiO2-P25 composite films with visible and UV–vis light photocatalytic activity , 2012 .

[12]  T. Morikawa,et al.  Charge-Carrier Dynamics in Nitrogen-Doped TiO2 Powder Studied by Femtosecond Time-Resolved Diffuse Reflectance Spectroscopy , 2012 .

[13]  Chenmo Wei,et al.  Photocatalytic degradation of Rhodamine B using nanocrystalline TiO2–zeolite surface composite catalysts: effects of photocatalytic condition on degradation efficiency , 2011 .

[14]  Xiaoping Wang,et al.  Effect of hexamethylenetetramine on the visible-light photocatalytic activity of C–N codoped TiO2 for bisphenol A degradation: evaluation of photocatalytic mechanism and solution toxicity , 2011 .

[15]  Dionysios D. Dionysiou,et al.  Synthesis, structural characterization and evaluation of sol-gel-based NF-TiO2 films with visible light-photoactivation for the removal of microcystin-LR , 2010 .

[16]  M. Xing,et al.  Preparation of nitrogen and fluorine co-doped mesoporous TiO2 microsphere and photodegradation of acid orange 7 under visible light , 2010 .

[17]  Min-Kyeong Yeo,et al.  The effect of nano-scale Zn-doped TiO2 and pure TiO2 particles on Hydra magnipapillata , 2010, Molecular & Cellular Toxicology.

[18]  Yinjie J. Tang,et al.  Bacterial responses to Cu-doped TiO(2) nanoparticles. , 2010, The Science of the total environment.

[19]  Jianfu Zhao,et al.  Photocatalytic degradation of Bisphenol A (BPA) using immobilized TiO2 and UV illumination in a horizontal circulating bed photocatalytic reactor (HCBPR). , 2009, Journal of hazardous materials.

[20]  Jiaguo Yu,et al.  Fabrication and Characterization of Visible-Light-Driven Plasmonic Photocatalyst Ag/AgCl/TiO2 Nanotube Arrays , 2009 .

[21]  Elias Stathatos,et al.  Visible light-activated N-F-codoped TiO2 nanoparticles for the photocatalytic degradation of microcystin-LR in water ☆ , 2009 .

[22]  L. Forró,et al.  Abatement of organics and Escherichia coli by N, S co-doped TiO2 under UV and visible light. Implications of the formation of singlet oxygen (1O2) under visible light , 2009 .

[23]  Kesong Yang,et al.  Density Functional Characterization of the Band Edges, the Band Gap States, and the Preferred Doping Sites of Halogen-Doped TiO2 , 2008 .

[24]  J. Sanz,et al.  Photodegradation of bisphenol A and related compounds under natural-like conditions in the presence of riboflavin: kinetics, mechanism and photoproducts. , 2008, Chemosphere.

[25]  Zhongbiao Wu,et al.  Characterization and photocatalytic activities of C, N and S co-doped TiO2 with 1D nanostructure prepared by the nano-confinement effect , 2008, Nanotechnology.

[26]  Jianhui Sun,et al.  Photocatalytic degradation of Orange G on nitrogen-doped TiO2 catalysts under visible light and sunlight irradiation. , 2008, Journal of hazardous materials.

[27]  Gaetano Granozzi,et al.  The Nature of Defects in Fluorine-Doped TiO2 , 2008 .

[28]  Zhichun Si,et al.  Photoinduced hydroxyl radical and photocatalytic activity of samarium-doped TiO(2) nanocrystalline. , 2008, Journal of hazardous materials.

[29]  M. Kimura,et al.  Structural evidence for endocrine disruptor bisphenol A binding to human nuclear receptor ERR gamma. , 2007, Journal of biochemistry.

[30]  Xiujian Zhao,et al.  Low Temperature Preparation and Characterization of N-doped and N-S-codoped TiO2 by Sol–gel Route , 2007 .

[31]  Xinyu Zhang,et al.  Supercritical preparation of a highly active S-doped TiO2 photocatalyst for methylene blue mineralization. , 2007, Environmental science & technology.

[32]  Y. Nosaka,et al.  Formation and Behavior of Singlet Molecular Oxygen in TiO2 Photocatalysis Studied by Detection of Near-Infrared Phosphorescence , 2007 .

[33]  S. Liao,et al.  Preparation of visible-light responsive N–F-codoped TiO2 photocatalyst by a sol–gel-solvothermal method , 2006 .

[34]  Baibiao Huang,et al.  Theoretical study of N-doped TiO2 rutile crystals. , 2006, The journal of physical chemistry. B.

[35]  M. Mohamed,et al.  Characterization, adsorption and photocatalytic activity of vanadium-doped TiO2 and sulfated TiO2 (rutile) catalysts: Degradation of methylene blue dye , 2006 .

[36]  Xiuyun Zhao,et al.  Photodegradation of benzoic acid over metal-doped TiO2 , 2006 .

[37]  Xi Yang,et al.  Photosensitized degradation of bisphenol A involving reactive oxygen species in the presence of humic substances. , 2006, Chemosphere.

[38]  Yong Liu,et al.  Band structures of TiO2 doped with N, C and B , 2006, Journal of Zhejiang University SCIENCE B.

[39]  Hajime Haneda,et al.  Origin of visible-light-driven photocatalysis: A comparative study on N/F-doped and N–F-codoped TiO2 powders by means of experimental characterizations and theoretical calculations , 2005 .

[40]  G. Yablonsky,et al.  Macro kinetic studies for photocatalytic degradation of benzoic acid in immobilized systems. , 2005, Chemosphere.

[41]  N. Spaldin,et al.  Transition metal-doped TiO2 and ZnO—present status of the field , 2005 .

[42]  N. Ohashi,et al.  Visible-Light-Driven N−F−Codoped TiO2 Photocatalysts. 2. Optical Characterization, Photocatalysis, and Potential Application to Air Purification , 2005 .

[43]  Hajime Haneda,et al.  Visible-light-driven photocatalysis on fluorine-doped TiO2 powders by the creation of surface oxygen vacancies , 2005 .

[44]  Hajime Haneda,et al.  Fluorine-doped TiO2 powders prepared by spray pyrolysis and their improved photocatalytic activity for decomposition of gas-phase acetaldehyde , 2005 .

[45]  M. Matsumura,et al.  Quantitative analysis of superoxide ion and hydrogen peroxide produced from molecular oxygen on photoirradiated TiO2 particles , 2004 .

[46]  H. Sakugawa,et al.  An evaluation of hydroxyl radical formation in river water and the potential for photodegradation of bisphenol A , 2004 .

[47]  K. Hashimoto,et al.  Carbon-doped Anatase TiO2 Powders as a Visible-light Sensitive Photocatalyst , 2003 .

[48]  S. Mabury,et al.  PhetoFate: a new approach in accounting for the contribution of indirect photolysis of pesticides and pharmaceuticals in surface waters. , 2003, Environmental science & technology.

[49]  Jiaguo Yu,et al.  Effects of F- Doping on the Photocatalytic Activity and Microstructures of Nanocrystalline TiO2 Powders , 2002 .

[50]  J. Laîné,et al.  Oxidation of organic contaminants in a rotating disk photocatalytic reactor: reaction kinetics in the liquid phase and the role of mass transfer based on the dimensionless Damköhler number , 2002 .

[51]  G. Marcì,et al.  Photocatalytic degradation of organic compounds in aqueous systems by transition metal doped polycrystalline TiO2 , 2002 .

[52]  R. Asahi,et al.  Visible-Light Photocatalysis in Nitrogen-Doped Titanium Oxides , 2001, Science.

[53]  A. Fujishima,et al.  Quantum yields of active oxidative species formed on TiO2 photocatalyst , 2000 .

[54]  Nick Serpone,et al.  Photocatalyzed destruction of water contaminants , 1991 .

[55]  C. A. Parker,et al.  A new sensitive chemical actinometer - II. Potassium ferrioxalate as a standard chemical actinometer , 1956, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.