HYDROGEN-POOR SUPERLUMINOUS SUPERNOVAE AND LONG-DURATION GAMMA-RAY BURSTS HAVE SIMILAR HOST GALAXIES
暂无分享,去创建一个
S. Smartt | R. Kirshner | E. Berger | D. Scolnic | A. Rest | R. Foley | R. Chornock | W. Burgett | K. Chambers | H. Flewelling | M. Huber | N. Kaiser | J. Tonry | R. Wainscoat | M. McCrum | K. Smith | W. Fong | M. Drout | G. Narayan | E. Magnier | P. Price | K. Hodapp | R. Lunnan | D. Milisavljevic | N. Sanders | P. Challis | A. Soderberg | C. Leibler | T. Laskar | G. H. Marion | P. Price | R. Wainscoat | P. Challis
[1] W. M. Wood-Vasey,et al. The superluminous supernova PS1-11ap: bridging the gap between low and high redshift , 2013, 1310.4417.
[2] A. Pastorello,et al. Slowly fading super-luminous supernovae that are not pair-instability explosions , 2013, Nature.
[3] A. Fruchter,et al. THE METAL AVERSION OF LONG-DURATION GAMMA-RAY BURSTS , 2013 .
[4] G. Cody,et al. EXPLORING THE POTENTIAL FORMATION OF ORGANIC SOLIDS IN CHONDRITES AND COMETS THROUGH POLYMERIZATION OF INTERSTELLAR FORMALDEHYDE , 2013 .
[5] C. Russell,et al. THE VERY UNUSUAL INTERPLANETARY CORONAL MASS EJECTION OF 2012 JULY 23: A BLAST WAVE MEDIATED BY SOLAR ENERGETIC PARTICLES , 2013 .
[6] Stephen A. Smee,et al. FourStar: The Near-Infrared Imager for the 6.5 m Baade Telescope at Las Campanas Observatory , 2013 .
[7] R. Davé,et al. SEDS: THE SPITZER EXTENDED DEEP SURVEY. SURVEY DESIGN, PHOTOMETRY, AND DEEP IRAC SOURCE COUNTS , 2013 .
[8] K. Finlator,et al. THE METALLICITY EVOLUTION OF LOW-MASS GALAXIES: NEW CONSTRAINTS AT INTERMEDIATE REDSHIFT , 2013, 1304.4239.
[9] A. Pastorello,et al. SUPER-LUMINOUS TYPE Ic SUPERNOVAE: CATCHING A MAGNETAR BY THE TAIL , 2013, 1304.3320.
[10] S. Zwart,et al. Are Superluminous Supernovae and Long GRBs the Products of Dynamical Processes in Young Dense Star Clusters , 2013, 1303.6961.
[11] S. Smartt,et al. PS1-10bzj: A FAST, HYDROGEN-POOR SUPERLUMINOUS SUPERNOVA IN A METAL-POOR HOST GALAXY , 2013, 1303.1531.
[12] S. More,et al. EXTRAORDINARY MAGNIFICATION OF THE ORDINARY TYPE Ia SUPERNOVA PS1-10afx , 2013, 1302.2785.
[13] J. Wheeler,et al. Rates of superluminous supernovae at z ∼ 0.2 , 2013, 1302.0911.
[14] S. Smartt,et al. PS1-10afx AT z = 1.388: PAN-STARRS1 DISCOVERY OF A NEW TYPE OF SUPERLUMINOUS SUPERNOVA , 2013, 1302.0009.
[15] J. Fynbo,et al. A POPULATION OF MASSIVE, LUMINOUS GALAXIES HOSTING HEAVILY DUST-OBSCURED GAMMA-RAY BURSTS: IMPLICATIONS FOR THE USE OF GRBs AS TRACERS OF COSMIC STAR FORMATION , 2013, 1301.5903.
[16] N. Yoshida,et al. Light-curve modelling of superluminous supernova 2006gy: collision between supernova ejecta and a dense circumstellar medium , 2012, 1204.6109.
[17] D. Kasen,et al. SUPERNOVA LIGHT CURVES POWERED BY FALLBACK ACCRETION , 2012, 1210.7240.
[18] R. Kotak,et al. THE HOST GALAXY OF THE SUPER-LUMINOUS SN 2010gx AND LIMITS ON EXPLOSIVE 56Ni PRODUCTION , 2012, 1210.4027.
[19] E. Chatzopoulos,et al. HYDROGEN-POOR CIRCUMSTELLAR SHELLS FROM PULSATIONAL PAIR-INSTABILITY SUPERNOVAE WITH RAPIDLY ROTATING PROGENITORS , 2012, 1210.1617.
[20] A. Gal-yam. Luminous Supernovae , 2012, Science.
[21] S. Blondin,et al. Superluminous supernovae: 56Ni power versus magnetar radiation , 2012, 1208.1214.
[22] W. M. Wood-Vasey,et al. THE NINTH DATA RELEASE OF THE SLOAN DIGITAL SKY SURVEY: FIRST SPECTROSCOPIC DATA FROM THE SDSS-III BARYON OSCILLATION SPECTROSCOPIC SURVEY , 2012, 1207.7137.
[23] D. L. Clements,et al. The Spitzer Extragalactic Representative Volume Survey (SERVS): Survey Definition and Goals (PASP, 124, 714, [2012]) , 2012, 1206.4060.
[24] S. Smartt,et al. ULTRALUMINOUS SUPERNOVAE AS A NEW PROBE OF THE INTERSTELLAR MEDIUM IN DISTANT GALAXIES , 2012, 1206.4050.
[25] E. Berger,et al. A SPECTROSCOPIC STUDY OF TYPE Ibc SUPERNOVA HOST GALAXIES FROM UNTARGETED SURVEYS , 2012, 1206.2643.
[26] S. Ginzburg,et al. SUPERLUMINOUS LIGHT CURVES FROM SUPERNOVAE EXPLODING IN A DENSE WIND , 2012, 1205.3455.
[27] R. Chevalier. COMMON ENVELOPE EVOLUTION LEADING TO SUPERNOVAE WITH DENSE INTERACTION , 2012, 1204.3300.
[28] A. Gal-yam,et al. WISeREP—An Interactive Supernova Data Repository , 2012, 1204.1891.
[29] T. Moriya,et al. A DIP AFTER THE EARLY EMISSION OF SUPERLUMINOUS SUPERNOVAE: A SIGNATURE OF SHOCK BREAKOUT WITHIN DENSE CIRCUMSTELLAR MEDIA , 2012, 1203.1451.
[30] R. J. Wainscoat,et al. THE Pan-STARRS1 PHOTOMETRIC SYSTEM , 2012, 1203.0297.
[31] R. Nichol,et al. SN 2006oz: Rise Of A Super-Luminous Supernova Observed By The SDSS-II SN Survey , 2012, 1201.5393.
[32] R. Kirshner,et al. CORE-COLLAPSE SUPERNOVAE AND HOST GALAXY STELLAR POPULATIONS , 2011, 1110.1377.
[33] A. M. S. Oderberg,et al. Ultra-Luminous Supernovae as a New Probe of the Interstellar Medium in Distant Galaxies , 2012 .
[34] R. Chevalier,et al. SHOCK BREAKOUT IN DENSE MASS LOSS: LUMINOUS SUPERNOVAE , 2011, 1101.1111.
[35] J. Prieto,et al. SN 2010jl IN UGC 5189: YET ANOTHER LUMINOUS TYPE IIn SUPERNOVA IN A METAL-POOR GALAXY , 2010, 1012.3461.
[36] L. Kewley,et al. PROGENITOR DIAGNOSTICS FOR STRIPPED CORE-COLLAPSE SUPERNOVAE: MEASURED METALLICITIES AT EXPLOSION SITES , 2010, 1007.0661.
[37] E. O. Ofek,et al. Hydrogen-poor superluminous stellar explosions , 2009, Nature.
[38] Douglas P. Finkbeiner,et al. MEASURING REDDENING WITH SLOAN DIGITAL SKY SURVEY STELLAR SPECTRA AND RECALIBRATING SFD , 2010, 1012.4804.
[39] F. Mannucci,et al. The metallicity of the long GRB hosts and the fundamental metallicity relation of low-mass galaxies , 2010, 1011.4506.
[40] A. West,et al. ON THE ORIGIN OF THE MASS–METALLICITY RELATION FOR GAMMA-RAY BURST HOST GALAXIES , 2010, 1011.4060.
[41] Las Cumbres Observatory Global Telescope Network,et al. ULTRA-BRIGHT OPTICAL TRANSIENTS ARE LINKED WITH TYPE Ic SUPERNOVAE , 2010, 1008.2674.
[42] A. Drake,et al. SDWFS-MT-1: A SELF-OBSCURED LUMINOUS SUPERNOVA AT z ≃ 0.2 , 2010, 1006.4162.
[43] L. Kewley,et al. THE HOST GALAXIES OF GAMMA-RAY BURSTS. II. A MASS–METALLICITY RELATION FOR LONG-DURATION GAMMA-RAY BURST HOST GALAXIES , 2010, 1006.3560.
[44] A. J. Levan,et al. The host galaxies of core‐collapse supernovae and gamma‐ray bursts , 2010, 1001.5042.
[45] Cambridge,et al. A Universal Stellar Initial Mass Function? A critical look at variations in extreme environments , 2010, 1001.2965.
[46] Andrew S. Fruchter,et al. A HIGH-METALLICITY HOST ENVIRONMENT FOR THE LONG-DURATION GRB 020819 , 2010, 1001.0970.
[47] W. M. Wood-Vasey,et al. PUSHING THE BOUNDARIES OF CONVENTIONAL CORE-COLLAPSE SUPERNOVAE: THE EXTREMELY ENERGETIC SUPERNOVA SN 2003ma , 2009, 0911.2002.
[48] Lars Bildsten,et al. SUPERNOVA LIGHT CURVES POWERED BY YOUNG MAGNETARS , 2009, 0911.0680.
[49] S. Woosley. BRIGHT SUPERNOVAE FROM MAGNETAR BIRTH , 2009, 0911.0698.
[50] L. Kewley,et al. THE HOST GALAXIES OF GAMMA-RAY BURSTS. I. INTERSTELLAR MEDIUM PROPERTIES OF TEN NEARBY LONG-DURATION GAMMA-RAY BURST HOSTS , 2009, 0907.4988.
[51] R. Foley,et al. SPECTRAL EVOLUTION OF THE EXTRAORDINARY TYPE IIn SUPERNOVA 2006gy , 2009, 0906.2200.
[52] J. Neill,et al. THE EXTREME HOSTS OF EXTREME SUPERNOVAE , 2010, 1011.3512.
[53] M. Sullivan,et al. Supernova 2007bi as a pair-instability explosion , 2009, Nature.
[54] C. Lintott,et al. Galaxy Zoo Green Peas: discovery of a class of compact extremely star-forming galaxies , 2009, 0907.4155.
[55] Ernest E. Croner,et al. The Palomar Transient Factory: System Overview, Performance, and First Results , 2009, 0906.5350.
[56] Garth D. Illingworth,et al. AN ULTRA-DEEP NEAR-INFRARED SPECTRUM OF A COMPACT QUIESCENT GALAXY AT z = 2.2 , 2009, 0905.1692.
[57] A. J. Drake,et al. FIRST RESULTS FROM THE CATALINA REAL-TIME TRANSIENT SURVEY , 2008, 0809.1394.
[58] S. Savaglio,et al. THE GALAXY POPULATION HOSTING GAMMA-RAY BURSTS , 2008, 0803.2718.
[59] K. Dawson,et al. DISCOVERY OF AN UNUSUAL OPTICAL TRANSIENT WITH THE HUBBLE SPACE TELESCOPE , 2008, 0809.1648.
[60] Paolo Coppi,et al. EAZY: A Fast, Public Photometric Redshift Code , 2008, 0807.1533.
[61] Edward J. Wollack,et al. FIVE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE OBSERVATIONS: COSMOLOGICAL INTERPRETATION , 2008, 0803.0547.
[62] L. Kewley,et al. Metallicity Calibrations and the Mass-Metallicity Relation for Star-forming Galaxies , 2008, 0801.1849.
[63] Princeton,et al. MEASURED METALLICITIES AT THE SITES OF NEARBY BROAD-LINED TYPE IC SUPERNOVAE AND IMPLICATIONS FOR THE SN-GRB CONNECTION , 2007 .
[64] S. Woosley,et al. Pulsational pair instability as an explanation for the most luminous supernovae , 2007, Nature.
[65] Robert M. Quimby,et al. SN 2005ap: A Most Brilliant Explosion , 2007, 0709.0302.
[66] Huan Lin,et al. A Galaxy Photometric Redshift Catalog for the Sloan Digital Sky Survey Data Release 6 , 2007, 0708.0030.
[67] N. B. Suntzeff,et al. The ESSENCE Supernova Survey: Survey Optimization, Observations, and Supernova Photometry , 2007, astro-ph/0701043.
[68] Charles E. Hansen,et al. SN 2006gy: Discovery of the Most Luminous Supernova Ever Recorded, Powered by the Death of an Extremely Massive Star like η Carinae , 2006, astro-ph/0612617.
[69] P. B. Cameron,et al. SN 2006gy: An Extremely Luminous Supernova in the Galaxy NGC 1260 , 2006, astro-ph/0612408.
[70] W. M. Wood-Vasey,et al. Light Curves of Type Ia Supernovae from Near the Time of Explosion , 2006, astro-ph/0608639.
[71] A. Connolly,et al. The Deep Evolutionary Exploratory Probe 2 Galaxy Redshift Survey: The Galaxy Luminosity Function to z ~ 1 , 2006 .
[72] C. Conselice,et al. Long γ-ray bursts and core-collapse supernovae have different environments , 2006, Nature.
[73] X. Kong,et al. Oxygen abundance in the Sloan Digital Sky Survey , 2006, astro-ph/0603255.
[74] N. Langer,et al. On the Collapsar Model of Long Gamma-Ray Bursts:Constraints from Cosmic Metallicity Evolution , 2005, astro-ph/0512271.
[75] S. Foley. The Host Galaxies of Gamma Ray Bursts , 2005 .
[76] J. Prieto,et al. Testing LMC Microlensing Scenarios: The Discrimination Power of the SuperMACHO Microlensing Survey , 2005, astro-ph/0509240.
[77] N. Langer,et al. Evolution of rapidly rotating metal-poor massive stars towards gamma-ray bursts , 2005, astro-ph/0508242.
[78] A. D. Koter,et al. On the metallicity dependence of Wolf-Rayet winds , 2005, astro-ph/0507352.
[79] C. Maraston. Evolutionary population synthesis: models, analysis of the ingredients and application to high‐z galaxies , 2004, astro-ph/0410207.
[80] L. Kewley,et al. Metallicities of 0.3 < z < 1.0 Galaxies in the GOODS-North Field , 2004, astro-ph/0408128.
[81] S. Ravindranath,et al. The Hubble Higher z Supernova Search: Supernovae to z ≈ 1.6 and Constraints on Type Ia Progenitor Models , 2004, astro-ph/0406546.
[82] J. Brinkmann,et al. The Origin of the Mass-Metallicity Relation: Insights from 53,000 Star-forming Galaxies in the Sloan Digital Sky Survey , 2004, astro-ph/0405537.
[83] I. Hook,et al. The Gemini–North Multi‐Object Spectrograph: Performance in Imaging, Long‐Slit, and Multi‐Object Spectroscopic Modes , 2004 .
[84] H. Rix,et al. GEMS: Galaxy Evolution from Morphologies and SEDs , 2004, astro-ph/0401427.
[85] J. Newman,et al. The Team Keck Treasury Redshift Survey of the GOODS-North Field , 2004, astro-ph/0401353.
[86] E. Rykoff,et al. The ROTSE‐III Robotic Telescope System , 2002, astro-ph/0210238.
[87] L. Ho,et al. Detailed Structural Decomposition of Galaxy Images , 2002, astro-ph/0204182.
[88] A. MacFadyen,et al. Collapsars: Gamma-Ray Bursts and Explosions in “Failed Supernovae” , 1998, astro-ph/9810274.
[89] R. Hook,et al. Drizzle: A Method for the Linear Reconstruction of Undersampled Images , 1998, astro-ph/9808087.
[90] Jr.,et al. STAR FORMATION IN GALAXIES ALONG THE HUBBLE SEQUENCE , 1998, astro-ph/9807187.
[91] D. Schlegel,et al. Maps of Dust Infrared Emission for Use in Estimation of Reddening and Cosmic Microwave Background Radiation Foregrounds , 1998 .
[92] William D. Vacca,et al. New Models for Wolf-Rayet and O Star Populations in Young Starbursts , 1997, astro-ph/9711140.
[93] J. Huchra,et al. H II regions and the abundance properties of spiral galaxies , 1994 .
[94] J. Mathis,et al. The relationship between infrared, optical, and ultraviolet extinction , 1989 .
[95] R. Weymann,et al. A MODERATE-RESOLUTION, HIGH-THROUGHPUT CCD CHANNEL FOR THE MMT SPECTROGRAPH , 1989 .
[96] D. Osterbrock,et al. Astrophysics of Gaseous Nebulae and Active Galactic Nuclei , 1989 .
[97] Richard Kessler,et al. PHOTOMETRIC SN IA CANDIDATES FROM THE THREE-YEAR SDSS-II SN SURVEY DATA , 2022 .