HYDROGEN-POOR SUPERLUMINOUS SUPERNOVAE AND LONG-DURATION GAMMA-RAY BURSTS HAVE SIMILAR HOST GALAXIES

We present optical spectroscopy and optical/near-IR photometry of 31 host galaxies of hydrogen-poor superluminous supernovae (SLSNe), including 15 events from the Pan-STARRS1 Medium Deep Survey. Our sample spans the redshift range 0.1 ≲ z ≲ 1.6, and is the first comprehensive host galaxy study of this specific subclass of cosmic explosions. Combining the multi-band photometry and emission-line measurements, we determine the luminosities, stellar masses, star formation rates, and metallicities. We find that, as a whole, the hosts of SLSNe are a low-luminosity (〈MB〉 ≈ −17.3 mag), low stellar mass (〈M*〉 ≈ 2 × 108 M☉) population, with a high median specific star formation rate (〈sSFR〉 ≈ 2 Gyr−1). The median metallicity of our spectroscopic sample is low, 12 + log (O/H) ≈ 8.35 ≈ 0.45 Z☉, although at least one host galaxy has solar metallicity. The host galaxies of H-poor SLSNe are statistically distinct from the hosts of GOODS core-collapse SNe (which cover a similar redshift range), but resemble the host galaxies of long-duration gamma-ray bursts (LGRBs) in terms of stellar mass, SFR, sSFR, and metallicity. This result indicates that the environmental causes leading to massive stars forming either SLSNe or LGRBs are similar, and in particular that SLSNe are more effectively formed in low metallicity environments. We speculate that the key ingredient is large core angular momentum, leading to a rapidly spinning magnetar in SLSNe and an accreting black hole in LGRBs.

[1]  W. M. Wood-Vasey,et al.  The superluminous supernova PS1-11ap: bridging the gap between low and high redshift , 2013, 1310.4417.

[2]  A. Pastorello,et al.  Slowly fading super-luminous supernovae that are not pair-instability explosions , 2013, Nature.

[3]  A. Fruchter,et al.  THE METAL AVERSION OF LONG-DURATION GAMMA-RAY BURSTS , 2013 .

[4]  G. Cody,et al.  EXPLORING THE POTENTIAL FORMATION OF ORGANIC SOLIDS IN CHONDRITES AND COMETS THROUGH POLYMERIZATION OF INTERSTELLAR FORMALDEHYDE , 2013 .

[5]  C. Russell,et al.  THE VERY UNUSUAL INTERPLANETARY CORONAL MASS EJECTION OF 2012 JULY 23: A BLAST WAVE MEDIATED BY SOLAR ENERGETIC PARTICLES , 2013 .

[6]  Stephen A. Smee,et al.  FourStar: The Near-Infrared Imager for the 6.5 m Baade Telescope at Las Campanas Observatory , 2013 .

[7]  R. Davé,et al.  SEDS: THE SPITZER EXTENDED DEEP SURVEY. SURVEY DESIGN, PHOTOMETRY, AND DEEP IRAC SOURCE COUNTS , 2013 .

[8]  K. Finlator,et al.  THE METALLICITY EVOLUTION OF LOW-MASS GALAXIES: NEW CONSTRAINTS AT INTERMEDIATE REDSHIFT , 2013, 1304.4239.

[9]  A. Pastorello,et al.  SUPER-LUMINOUS TYPE Ic SUPERNOVAE: CATCHING A MAGNETAR BY THE TAIL , 2013, 1304.3320.

[10]  S. Zwart,et al.  Are Superluminous Supernovae and Long GRBs the Products of Dynamical Processes in Young Dense Star Clusters , 2013, 1303.6961.

[11]  S. Smartt,et al.  PS1-10bzj: A FAST, HYDROGEN-POOR SUPERLUMINOUS SUPERNOVA IN A METAL-POOR HOST GALAXY , 2013, 1303.1531.

[12]  S. More,et al.  EXTRAORDINARY MAGNIFICATION OF THE ORDINARY TYPE Ia SUPERNOVA PS1-10afx , 2013, 1302.2785.

[13]  J. Wheeler,et al.  Rates of superluminous supernovae at z ∼ 0.2 , 2013, 1302.0911.

[14]  S. Smartt,et al.  PS1-10afx AT z = 1.388: PAN-STARRS1 DISCOVERY OF A NEW TYPE OF SUPERLUMINOUS SUPERNOVA , 2013, 1302.0009.

[15]  J. Fynbo,et al.  A POPULATION OF MASSIVE, LUMINOUS GALAXIES HOSTING HEAVILY DUST-OBSCURED GAMMA-RAY BURSTS: IMPLICATIONS FOR THE USE OF GRBs AS TRACERS OF COSMIC STAR FORMATION , 2013, 1301.5903.

[16]  N. Yoshida,et al.  Light-curve modelling of superluminous supernova 2006gy: collision between supernova ejecta and a dense circumstellar medium , 2012, 1204.6109.

[17]  D. Kasen,et al.  SUPERNOVA LIGHT CURVES POWERED BY FALLBACK ACCRETION , 2012, 1210.7240.

[18]  R. Kotak,et al.  THE HOST GALAXY OF THE SUPER-LUMINOUS SN 2010gx AND LIMITS ON EXPLOSIVE 56Ni PRODUCTION , 2012, 1210.4027.

[19]  E. Chatzopoulos,et al.  HYDROGEN-POOR CIRCUMSTELLAR SHELLS FROM PULSATIONAL PAIR-INSTABILITY SUPERNOVAE WITH RAPIDLY ROTATING PROGENITORS , 2012, 1210.1617.

[20]  A. Gal-yam Luminous Supernovae , 2012, Science.

[21]  S. Blondin,et al.  Superluminous supernovae: 56Ni power versus magnetar radiation , 2012, 1208.1214.

[22]  W. M. Wood-Vasey,et al.  THE NINTH DATA RELEASE OF THE SLOAN DIGITAL SKY SURVEY: FIRST SPECTROSCOPIC DATA FROM THE SDSS-III BARYON OSCILLATION SPECTROSCOPIC SURVEY , 2012, 1207.7137.

[23]  D. L. Clements,et al.  The Spitzer Extragalactic Representative Volume Survey (SERVS): Survey Definition and Goals (PASP, 124, 714, [2012]) , 2012, 1206.4060.

[24]  S. Smartt,et al.  ULTRALUMINOUS SUPERNOVAE AS A NEW PROBE OF THE INTERSTELLAR MEDIUM IN DISTANT GALAXIES , 2012, 1206.4050.

[25]  E. Berger,et al.  A SPECTROSCOPIC STUDY OF TYPE Ibc SUPERNOVA HOST GALAXIES FROM UNTARGETED SURVEYS , 2012, 1206.2643.

[26]  S. Ginzburg,et al.  SUPERLUMINOUS LIGHT CURVES FROM SUPERNOVAE EXPLODING IN A DENSE WIND , 2012, 1205.3455.

[27]  R. Chevalier COMMON ENVELOPE EVOLUTION LEADING TO SUPERNOVAE WITH DENSE INTERACTION , 2012, 1204.3300.

[28]  A. Gal-yam,et al.  WISeREP—An Interactive Supernova Data Repository , 2012, 1204.1891.

[29]  T. Moriya,et al.  A DIP AFTER THE EARLY EMISSION OF SUPERLUMINOUS SUPERNOVAE: A SIGNATURE OF SHOCK BREAKOUT WITHIN DENSE CIRCUMSTELLAR MEDIA , 2012, 1203.1451.

[30]  R. J. Wainscoat,et al.  THE Pan-STARRS1 PHOTOMETRIC SYSTEM , 2012, 1203.0297.

[31]  R. Nichol,et al.  SN 2006oz: Rise Of A Super-Luminous Supernova Observed By The SDSS-II SN Survey , 2012, 1201.5393.

[32]  R. Kirshner,et al.  CORE-COLLAPSE SUPERNOVAE AND HOST GALAXY STELLAR POPULATIONS , 2011, 1110.1377.

[33]  A. M. S. Oderberg,et al.  Ultra-Luminous Supernovae as a New Probe of the Interstellar Medium in Distant Galaxies , 2012 .

[34]  R. Chevalier,et al.  SHOCK BREAKOUT IN DENSE MASS LOSS: LUMINOUS SUPERNOVAE , 2011, 1101.1111.

[35]  J. Prieto,et al.  SN 2010jl IN UGC 5189: YET ANOTHER LUMINOUS TYPE IIn SUPERNOVA IN A METAL-POOR GALAXY , 2010, 1012.3461.

[36]  L. Kewley,et al.  PROGENITOR DIAGNOSTICS FOR STRIPPED CORE-COLLAPSE SUPERNOVAE: MEASURED METALLICITIES AT EXPLOSION SITES , 2010, 1007.0661.

[37]  E. O. Ofek,et al.  Hydrogen-poor superluminous stellar explosions , 2009, Nature.

[38]  Douglas P. Finkbeiner,et al.  MEASURING REDDENING WITH SLOAN DIGITAL SKY SURVEY STELLAR SPECTRA AND RECALIBRATING SFD , 2010, 1012.4804.

[39]  F. Mannucci,et al.  The metallicity of the long GRB hosts and the fundamental metallicity relation of low-mass galaxies , 2010, 1011.4506.

[40]  A. West,et al.  ON THE ORIGIN OF THE MASS–METALLICITY RELATION FOR GAMMA-RAY BURST HOST GALAXIES , 2010, 1011.4060.

[41]  Las Cumbres Observatory Global Telescope Network,et al.  ULTRA-BRIGHT OPTICAL TRANSIENTS ARE LINKED WITH TYPE Ic SUPERNOVAE , 2010, 1008.2674.

[42]  A. Drake,et al.  SDWFS-MT-1: A SELF-OBSCURED LUMINOUS SUPERNOVA AT z ≃ 0.2 , 2010, 1006.4162.

[43]  L. Kewley,et al.  THE HOST GALAXIES OF GAMMA-RAY BURSTS. II. A MASS–METALLICITY RELATION FOR LONG-DURATION GAMMA-RAY BURST HOST GALAXIES , 2010, 1006.3560.

[44]  A. J. Levan,et al.  The host galaxies of core‐collapse supernovae and gamma‐ray bursts , 2010, 1001.5042.

[45]  Cambridge,et al.  A Universal Stellar Initial Mass Function? A critical look at variations in extreme environments , 2010, 1001.2965.

[46]  Andrew S. Fruchter,et al.  A HIGH-METALLICITY HOST ENVIRONMENT FOR THE LONG-DURATION GRB 020819 , 2010, 1001.0970.

[47]  W. M. Wood-Vasey,et al.  PUSHING THE BOUNDARIES OF CONVENTIONAL CORE-COLLAPSE SUPERNOVAE: THE EXTREMELY ENERGETIC SUPERNOVA SN 2003ma , 2009, 0911.2002.

[48]  Lars Bildsten,et al.  SUPERNOVA LIGHT CURVES POWERED BY YOUNG MAGNETARS , 2009, 0911.0680.

[49]  S. Woosley BRIGHT SUPERNOVAE FROM MAGNETAR BIRTH , 2009, 0911.0698.

[50]  L. Kewley,et al.  THE HOST GALAXIES OF GAMMA-RAY BURSTS. I. INTERSTELLAR MEDIUM PROPERTIES OF TEN NEARBY LONG-DURATION GAMMA-RAY BURST HOSTS , 2009, 0907.4988.

[51]  R. Foley,et al.  SPECTRAL EVOLUTION OF THE EXTRAORDINARY TYPE IIn SUPERNOVA 2006gy , 2009, 0906.2200.

[52]  J. Neill,et al.  THE EXTREME HOSTS OF EXTREME SUPERNOVAE , 2010, 1011.3512.

[53]  M. Sullivan,et al.  Supernova 2007bi as a pair-instability explosion , 2009, Nature.

[54]  C. Lintott,et al.  Galaxy Zoo Green Peas: discovery of a class of compact extremely star-forming galaxies , 2009, 0907.4155.

[55]  Ernest E. Croner,et al.  The Palomar Transient Factory: System Overview, Performance, and First Results , 2009, 0906.5350.

[56]  Garth D. Illingworth,et al.  AN ULTRA-DEEP NEAR-INFRARED SPECTRUM OF A COMPACT QUIESCENT GALAXY AT z = 2.2 , 2009, 0905.1692.

[57]  A. J. Drake,et al.  FIRST RESULTS FROM THE CATALINA REAL-TIME TRANSIENT SURVEY , 2008, 0809.1394.

[58]  S. Savaglio,et al.  THE GALAXY POPULATION HOSTING GAMMA-RAY BURSTS , 2008, 0803.2718.

[59]  K. Dawson,et al.  DISCOVERY OF AN UNUSUAL OPTICAL TRANSIENT WITH THE HUBBLE SPACE TELESCOPE , 2008, 0809.1648.

[60]  Paolo Coppi,et al.  EAZY: A Fast, Public Photometric Redshift Code , 2008, 0807.1533.

[61]  Edward J. Wollack,et al.  FIVE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE OBSERVATIONS: COSMOLOGICAL INTERPRETATION , 2008, 0803.0547.

[62]  L. Kewley,et al.  Metallicity Calibrations and the Mass-Metallicity Relation for Star-forming Galaxies , 2008, 0801.1849.

[63]  Princeton,et al.  MEASURED METALLICITIES AT THE SITES OF NEARBY BROAD-LINED TYPE IC SUPERNOVAE AND IMPLICATIONS FOR THE SN-GRB CONNECTION , 2007 .

[64]  S. Woosley,et al.  Pulsational pair instability as an explanation for the most luminous supernovae , 2007, Nature.

[65]  Robert M. Quimby,et al.  SN 2005ap: A Most Brilliant Explosion , 2007, 0709.0302.

[66]  Huan Lin,et al.  A Galaxy Photometric Redshift Catalog for the Sloan Digital Sky Survey Data Release 6 , 2007, 0708.0030.

[67]  N. B. Suntzeff,et al.  The ESSENCE Supernova Survey: Survey Optimization, Observations, and Supernova Photometry , 2007, astro-ph/0701043.

[68]  Charles E. Hansen,et al.  SN 2006gy: Discovery of the Most Luminous Supernova Ever Recorded, Powered by the Death of an Extremely Massive Star like η Carinae , 2006, astro-ph/0612617.

[69]  P. B. Cameron,et al.  SN 2006gy: An Extremely Luminous Supernova in the Galaxy NGC 1260 , 2006, astro-ph/0612408.

[70]  W. M. Wood-Vasey,et al.  Light Curves of Type Ia Supernovae from Near the Time of Explosion , 2006, astro-ph/0608639.

[71]  A. Connolly,et al.  The Deep Evolutionary Exploratory Probe 2 Galaxy Redshift Survey: The Galaxy Luminosity Function to z ~ 1 , 2006 .

[72]  C. Conselice,et al.  Long γ-ray bursts and core-collapse supernovae have different environments , 2006, Nature.

[73]  X. Kong,et al.  Oxygen abundance in the Sloan Digital Sky Survey , 2006, astro-ph/0603255.

[74]  N. Langer,et al.  On the Collapsar Model of Long Gamma-Ray Bursts:Constraints from Cosmic Metallicity Evolution , 2005, astro-ph/0512271.

[75]  S. Foley The Host Galaxies of Gamma Ray Bursts , 2005 .

[76]  J. Prieto,et al.  Testing LMC Microlensing Scenarios: The Discrimination Power of the SuperMACHO Microlensing Survey , 2005, astro-ph/0509240.

[77]  N. Langer,et al.  Evolution of rapidly rotating metal-poor massive stars towards gamma-ray bursts , 2005, astro-ph/0508242.

[78]  A. D. Koter,et al.  On the metallicity dependence of Wolf-Rayet winds , 2005, astro-ph/0507352.

[79]  C. Maraston Evolutionary population synthesis: models, analysis of the ingredients and application to high‐z galaxies , 2004, astro-ph/0410207.

[80]  L. Kewley,et al.  Metallicities of 0.3 < z < 1.0 Galaxies in the GOODS-North Field , 2004, astro-ph/0408128.

[81]  S. Ravindranath,et al.  The Hubble Higher z Supernova Search: Supernovae to z ≈ 1.6 and Constraints on Type Ia Progenitor Models , 2004, astro-ph/0406546.

[82]  J. Brinkmann,et al.  The Origin of the Mass-Metallicity Relation: Insights from 53,000 Star-forming Galaxies in the Sloan Digital Sky Survey , 2004, astro-ph/0405537.

[83]  I. Hook,et al.  The Gemini–North Multi‐Object Spectrograph: Performance in Imaging, Long‐Slit, and Multi‐Object Spectroscopic Modes , 2004 .

[84]  H. Rix,et al.  GEMS: Galaxy Evolution from Morphologies and SEDs , 2004, astro-ph/0401427.

[85]  J. Newman,et al.  The Team Keck Treasury Redshift Survey of the GOODS-North Field , 2004, astro-ph/0401353.

[86]  E. Rykoff,et al.  The ROTSE‐III Robotic Telescope System , 2002, astro-ph/0210238.

[87]  L. Ho,et al.  Detailed Structural Decomposition of Galaxy Images , 2002, astro-ph/0204182.

[88]  A. MacFadyen,et al.  Collapsars: Gamma-Ray Bursts and Explosions in “Failed Supernovae” , 1998, astro-ph/9810274.

[89]  R. Hook,et al.  Drizzle: A Method for the Linear Reconstruction of Undersampled Images , 1998, astro-ph/9808087.

[90]  Jr.,et al.  STAR FORMATION IN GALAXIES ALONG THE HUBBLE SEQUENCE , 1998, astro-ph/9807187.

[91]  D. Schlegel,et al.  Maps of Dust Infrared Emission for Use in Estimation of Reddening and Cosmic Microwave Background Radiation Foregrounds , 1998 .

[92]  William D. Vacca,et al.  New Models for Wolf-Rayet and O Star Populations in Young Starbursts , 1997, astro-ph/9711140.

[93]  J. Huchra,et al.  H II regions and the abundance properties of spiral galaxies , 1994 .

[94]  J. Mathis,et al.  The relationship between infrared, optical, and ultraviolet extinction , 1989 .

[95]  R. Weymann,et al.  A MODERATE-RESOLUTION, HIGH-THROUGHPUT CCD CHANNEL FOR THE MMT SPECTROGRAPH , 1989 .

[96]  D. Osterbrock,et al.  Astrophysics of Gaseous Nebulae and Active Galactic Nuclei , 1989 .

[97]  Richard Kessler,et al.  PHOTOMETRIC SN IA CANDIDATES FROM THE THREE-YEAR SDSS-II SN SURVEY DATA , 2022 .