Colipase: structure and interaction with pancreatic lipase.

[1]  R. Kaptein,et al.  360-MHz nuclear magnetic resonance and laser photochemically induced dynamic nuclear polarization studies of bile salt interaction with porcine colipase A. , 2005, European journal of biochemistry.

[2]  C. Chothia,et al.  The atomic structure of protein-protein recognition sites. , 1999, Journal of molecular biology.

[3]  D. Pignol,et al.  Ion Pairing between Lipase and Colipase Plays a Critical Role in Catalysis* , 1998, The Journal of Biological Chemistry.

[4]  R. Verger,et al.  Structure and Activity of Rat Pancreatic Lipase-related Protein 2* , 1998, The Journal of Biological Chemistry.

[5]  H. van Tilbeurgh,et al.  Structural basis for the substrate selectivity of pancreatic lipases and some related proteins. , 1998, Biochimica et biophysica acta.

[6]  J. Boisbouvier,et al.  A structural homologue of colipase in black mamba venom revealed by NMR floating disulphide bridge analysis. , 1998, Journal of molecular biology.

[7]  P. Barboni,et al.  Pancreatic lipase-related protein 1 (PLRP1) is present in the pancreatic juice of several species. , 1998, Biochimica et biophysica acta.

[8]  M. Lowe,et al.  The hydrophobic surface of colipase influences lipase activity at an oil-water interface. , 1998, Journal of lipid research.

[9]  R. Verger,et al.  Reactivation of the totally inactive pancreatic lipase RP1 by structure‐predicted point mutations , 1998, Proteins.

[10]  D. Moss,et al.  Structure of the key toxin in gas gangrene , 1998, Nature Structural &Molecular Biology.

[11]  E. Koonin,et al.  A colipase fold in the carboxy-terminal domain of the Wnt antagonists – the Dickkopfs , 1998, Current Biology.

[12]  D. Pignol,et al.  Pancreatic lipase-related protein type 1: a double mutation restores a significant lipase activity. , 1998, Biochemical and biophysical research communications.

[13]  C. Niehrs,et al.  Dickkopf-1 is a member of a new family of secreted proteins and functions in head induction , 1998, Nature.

[14]  Robert Fletterick,et al.  The structure of mammalian 15-lipoxygenase reveals similarity to the lipases and the determinants of substrate specificity , 1997, Nature Structural Biology.

[15]  S. Cole,et al.  The carboxy‐terminal C2‐like domain of the α‐toxin from Clostridium perfringens mediates calcium‐dependent membrane recognition , 1997, Molecular microbiology.

[16]  F. Dyda,et al.  The crystal structure of bovine bile salt activated lipase: insights into the bile salt activation mechanism. , 1997, Structure.

[17]  S. Penel,et al.  Neutron crystallographic evidence of lipase–colipase complex activation by a micelle , 1997, The EMBO journal.

[18]  J. Kastelein,et al.  Mutation of Tryptophan Residues in Lipoprotein Lipase , 1997, The Journal of Biological Chemistry.

[19]  M. Lowe Colipase Stabilizes the Lid Domain of Pancreatic Triglyceride Lipase* , 1997, The Journal of Biological Chemistry.

[20]  J. Falke,et al.  The C2 domain calcium‐binding motif: Structural and functional diversity , 1996, Protein science : a publication of the Protein Society.

[21]  D. Bourgeois,et al.  A pancreatic lipase with a phospholipase A1 activity: crystal structure of a chimeric pancreatic lipase-related protein 2 from guinea pig. , 1996, Structure.

[22]  D. Pignol,et al.  Lipase Activation by Nonionic Detergents , 1996, The Journal of Biological Chemistry.

[23]  Roger L. Williams,et al.  Crystal structure of a mammalian phosphoinositide-specific phospholipase Cδ , 1996, Nature.

[24]  S. Sprang,et al.  Structure of the first C2 domain of synaptotagmin I: A novel Ca2+/phospholipid-binding fold , 1995, Cell.

[25]  H. Tilbeurgh,et al.  Crystallographic study of the structure of colipase and of the interaction with pancreatic lipase , 1995, Protein science : a publication of the Protein Society.

[26]  R. Kaptein,et al.  Solution structure of porcine pancreatic procolipase as determined from 1H homonuclear two-dimensional and three-dimensional NMR. , 1994, European journal of biochemistry.

[27]  H. van Tilbeurgh,et al.  The 2.46 A resolution structure of the pancreatic lipase-colipase complex inhibited by a C11 alkyl phosphonate. , 1994, Biochemistry.

[28]  C Cambillau,et al.  Horse pancreatic lipase. The crystal structure refined at 2.3 A resolution. , 1994, Journal of molecular biology.

[29]  J. Lalouel,et al.  The carboxyl-terminal domain of lipoprotein lipase binds to the low density lipoprotein receptor-related protein/alpha 2-macroglobulin receptor (LRP) and mediates binding of normal very low density lipoproteins to LRP. , 1994, The Journal of biological chemistry.

[30]  R. Verger,et al.  Evidence for a pancreatic lipase subfamily with new kinetic properties. , 1994, Biochemistry.

[31]  J. Lalouel,et al.  Lipoprotein lipase. Molecular model based on the pancreatic lipase x-ray structure: consequences for heparin binding and catalysis. , 1994, The Journal of biological chemistry.

[32]  L M Amzel,et al.  The three-dimensional structure of an arachidonic acid 15-lipoxygenase. , 1993, Science.

[33]  R. Titball,et al.  Biochemical and immunological properties of the C-terminal domain of the alpha-toxin of Clostridium perfringens. , 1993, FEMS microbiology letters.

[34]  L. Thim,et al.  A structural domain (the lid) found in pancreatic lipases is absent in the guinea pig (phospho)lipase. , 1993, Biochemistry.

[35]  H. Tilbeurgh,et al.  Interfacial activation of the lipase–procolipase complex by mixed micelles revealed by X-ray crystallography , 1993, Nature.

[36]  T. P. King,et al.  Sequence similarity of a hornet (D. maculata) venom allergen phospholipase A1 with mammalian lipases , 1993, FEBS letters.

[37]  G. Bengtsson-Olivecrona,et al.  Chymotryptic cleavage of lipoprotein lipase. Identification of cleavage sites and functional studies of the truncated molecule. , 1993, European journal of biochemistry.

[38]  H. Tilbeurgh,et al.  Structure of the pancreatic lipase–procolipase complex , 1992, Nature.

[39]  P. Buchwald,et al.  Two novel human pancreatic lipase related proteins, hPLRP1 and hPLRP2. Differences in colipase dependence and in lipase activity. , 1992, The Journal of biological chemistry.

[40]  F. Winkler,et al.  Structure of human pancreatic lipase , 1990, Nature.

[41]  R. Dixon,et al.  Requirement of a 5-lipoxygenase-activating protein for leukotriene synthesis , 1990, Nature.

[42]  P. Kraulis,et al.  Determination of the three-dimensional solution structure of the C-terminal domain of cellobiohydrolase I from Trichoderma reesei. A study using nuclear magnetic resonance and hybrid distance geometry-dynamical simulated annealing. , 1989, Biochemistry.

[43]  R. Verger,et al.  A new kinetic approach for studying phospholipase C (Clostridium perfringens alpha toxin) activity on phospholipid monolayers. , 1988, Biochemistry.

[44]  S. Dahlén,et al.  Leukotrienes and lipoxins: structures, biosynthesis, and biological effects. , 1987, Science.

[45]  H. van Tilbeurgh,et al.  Limited proteolysis of the cellobiohydrolase I from Trichoderma reesei , 1986 .

[46]  T. P. King,et al.  Wasp venom proteins: phospholipase A1 and B. , 1984, Archives of Biochemistry and Biophysics.

[47]  C. Erlanson‐Albertsson,et al.  Measurement of the binding of human colipase to human lipase and lipase substrates. , 1982, Biochimica et biophysica acta.

[48]  L. Sarda,et al.  Studies on the effect of bile salt and colipase on enzymatic lipolysis. Improved method for the determination of pancreatic lipase and colipase. , 1976, Biochimie.

[49]  H. van Tilbeurgh,et al.  Pancreatic lipases and their complexes with colipases and inhibitors: crystallization and crystal packing. , 1997, Methods in enzymology.