Searching for Mutually Orthogonal Latin Squares via integer and constraint programming

This paper applies algorithms integrating Integer Programming (IP) and Constraint Programming (CP) to the Mutually Orthogonal Latin Squares (MOLS) problem. We investigate the behaviour of these algorithms against traditional IP and CP schemes. Computational results are obtained with respect to various aspects of the algorithms, using instances of the 2 MOLS and 3 MOLS problems. The benefits of integrating IP with CP on this feasibility problem are clearly exhibited, especially in large problem instances.

[1]  Meinolf Sellmann,et al.  Symmetry Breaking , 2001, CP.

[2]  Charles J. Colbourn,et al.  Mutually orthogonal latin squares: a brief survey of constructions , 2001 .

[3]  A. D. Keedwell,et al.  Latin Squares: New Developments in the Theory and Applications , 1991 .

[4]  Alexander Bockmayr,et al.  Branch and Infer: A Unifying Framework for Integer and Finite Domain Constraint Programming , 1998, INFORMS J. Comput..

[5]  Hantao Zhang Solving Open Quasigroup Problems by Propositional Reasoning , 1994 .

[6]  D. Kumar OPTIMIZATION METHODS , 2007 .

[7]  D. Shmoys,et al.  The Promise of LP to Boost CSP Techniques for Combinatorial Problems , 2002 .

[8]  George B. Dantzig,et al.  Linear programming and extensions , 1965 .

[9]  G. Mullen,et al.  Discrete Mathematics Using Latin Squares , 1998, The Mathematical Gazette.

[10]  E. M. L. Beale,et al.  Global optimization using special ordered sets , 1976, Math. Program..

[11]  Dieter Jungnickel,et al.  Maximal partial spreads in PG(3, 4) and maximal sets of mutually orthogonal latin squares of order 16 , 2003, Discret. Math..

[12]  Stephen J. Wright Primal-Dual Interior-Point Methods , 1997, Other Titles in Applied Mathematics.

[13]  V. Chandru,et al.  Optimization Methods for Logical Inference , 1999 .

[14]  Richard J. Wallace,et al.  Constraint Programming and Large Scale Discrete Optimization , 2001 .

[15]  John N. Hooker,et al.  A Hybrid Method for the Planning and Scheduling , 2005, Constraints.

[16]  María Auxilio Osorio Lama,et al.  Mixed Logical-linear Programming , 1999, Discret. Appl. Math..

[17]  Ian P. Gent,et al.  Symmetry Breaking in Constraint Programming , 2000, ECAI.

[18]  Dimitris Magos,et al.  Integrating Constraint and Integer Programming for the Orthogonal Latin Squares Problem , 2002, CP.

[19]  Jean-Charles Régin,et al.  A Filtering Algorithm for Constraints of Difference in CSPs , 1994, AAAI.

[20]  J. Hooker,et al.  Logic-Based Methods for Optimization: Combining Optimization and Constraint Satisfaction , 2000 .

[21]  Alexander Bockmayr,et al.  Detecting Infeasibility and Generating Cuts for MIP using CP , 2003 .

[22]  Manfred W. Padberg,et al.  On the facial structure of set packing polyhedra , 1973, Math. Program..

[23]  Martin W. P. Savelsbergh,et al.  Preprocessing and Probing Techniques for Mixed Integer Programming Problems , 1994, INFORMS J. Comput..

[24]  Leslie E. Trotter,et al.  A class of facet producing graphs for vertex packing polyhedra , 1975, Discret. Math..

[25]  Jean-François Puget Symmetry Breaking Revisited , 2002, CP.

[26]  C. Lam The Search for a Finite Projective Plane of Order 10 , 2005 .

[27]  Warwick Harvey Symmetry Breaking and the Social Golfer Problem , 2001 .

[28]  Dimitris Magos,et al.  A Branch & Cut algorithm for a four-index assignment problem , 2004, J. Oper. Res. Soc..