Finding diverse ways to improve algebraic connectivity through multi-start optimization

The algebraic connectivity, also known as the Fiedler value, is a spectral measure of network connectivity that can be increased through edge addition. We present an algorithm for producing many diverse ways to add a fixed number of edges to a network to achieve a near optimal Fiedler value. Previous Fielder value optimization algorithms (i.e. the greedy algorithm) output only one solution. Obtaining a single solution is rarely good enough for real-world network redesign problems, as practical constraints (political, physical or financial) may prevent implementation. Our algorithm takes a multi-start optimization approach, adding a random initial edge and then applies a greedy heuristic to improve the Fiedler value. The random choice moves us to a new region of the search space, enabling discovery of diverse solutions. Additionally, we present a Determinantal Point Process framework for quantifying diversity. We then apply a Markov chain Monte Carlo technique to sift through the large number of output solutions and locate a smaller, more manageable collection of highly diverse solutions that can be presented to network redesign engineers. We demonstrate the effectiveness of our algorithm on real-world graphs with varied structures.

[1]  Ben Taskar,et al.  k-DPPs: Fixed-Size Determinantal Point Processes , 2011, ICML.

[2]  Ulrike von Luxburg,et al.  A tutorial on spectral clustering , 2007, Stat. Comput..

[3]  D. S. Mitrinovic,et al.  Gram’s Inequality , 1993 .

[4]  Ryan A. Rossi,et al.  The Network Data Repository with Interactive Graph Analytics and Visualization , 2015, AAAI.

[5]  Andrew B. Kahng,et al.  New spectral methods for ratio cut partitioning and clustering , 1991, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[6]  Yoonsoo Kim,et al.  Bisection algorithm of increasing algebraic connectivity by adding an edge , 2009, 2009 17th Mediterranean Conference on Control and Automation.

[7]  Christoph Maas,et al.  Transportation in graphs and the admittance spectrum , 1987, Discret. Appl. Math..

[8]  Hung-Hsuan Chen,et al.  Discovering missing links in networks using vertex similarity measures , 2012, SAC '12.

[9]  Jeff Alstott,et al.  Local rewiring algorithms to increase clustering and grow a small world , 2016, J. Complex Networks.

[10]  Suvrit Sra,et al.  Fast Mixing Markov Chains for Strongly Rayleigh Measures, DPPs, and Constrained Sampling , 2016, NIPS.

[11]  Gang Li,et al.  Maximizing Algebraic Connectivity via Minimum Degree and Maximum Distance , 2018, IEEE Access.

[12]  Gueorgi Kossinets Effects of missing data in social networks , 2006, Soc. Networks.

[13]  Bojan Mohar,et al.  Isoperimetric numbers of graphs , 1989, J. Comb. Theory, Ser. B.

[14]  Piet Van Mieghem,et al.  Algebraic connectivity optimization via link addition , 2008, BIONETICS.

[15]  Ludmil T. Zikatanov,et al.  A Cascadic Multigrid Algorithm for Computing the Fiedler Vector of Graph Laplacians , 2014, 1412.0565.

[16]  M. Newman,et al.  Hierarchical structure and the prediction of missing links in networks , 2008, Nature.

[17]  Andreas Zell,et al.  Optimal assignment kernels for attributed molecular graphs , 2005, ICML.

[18]  A. Hagberg,et al.  Rewiring networks for synchronization. , 2008, Chaos.

[19]  John N. Tsitsiklis,et al.  Convergence Speed in Distributed Consensus and Averaging , 2009, SIAM J. Control. Optim..

[20]  Qing Ling,et al.  On the Linear Convergence of the ADMM in Decentralized Consensus Optimization , 2013, IEEE Transactions on Signal Processing.

[21]  Ben Taskar,et al.  Determinantal Point Processes for Machine Learning , 2012, Found. Trends Mach. Learn..

[22]  L. Wehenkel,et al.  Contingency Ranking With Respect to Overloads in Very Large Power Systems Taking Into Account Uncertainty, Preventive, and Corrective Actions , 2013, IEEE Transactions on Power Systems.

[23]  Ajith Ramanathan,et al.  Practical Diversified Recommendations on YouTube with Determinantal Point Processes , 2018, CIKM.

[24]  Jure Leskovec,et al.  {SNAP Datasets}: {Stanford} Large Network Dataset Collection , 2014 .

[25]  Gordon F. Royle,et al.  Algebraic Graph Theory , 2001, Graduate texts in mathematics.

[26]  Damon Mosk-Aoyama,et al.  Maximum algebraic connectivity augmentation is NP-hard , 2008, Operations Research Letters.

[27]  Cristopher Moore,et al.  Accuracy and scaling phenomena in Internet mapping. , 2004, Physical review letters.

[28]  Jean Maeght,et al.  AC Power Flow Data in MATPOWER and QCQP Format: iTesla, RTE Snapshots, and PEGASE , 2016, 1603.01533.

[29]  Michal Valko,et al.  DPPy: DPP Sampling with Python , 2019, J. Mach. Learn. Res..

[30]  Carlos Rocha,et al.  Experiments with two heuristic algorithms for the Maximum Algebraic Connectivity Augmentation Problem , 2016, Electron. Notes Discret. Math..

[31]  Caterina M. Scoglio,et al.  Optimizing algebraic connectivity by edge rewiring , 2013, Appl. Math. Comput..

[32]  Celso C. Ribeiro,et al.  Multi-start methods for combinatorial optimization , 2013, Eur. J. Oper. Res..

[33]  Leo Katz,et al.  A new status index derived from sociometric analysis , 1953 .

[34]  R. Merris Laplacian matrices of graphs: a survey , 1994 .

[35]  Stephen P. Boyd,et al.  Growing Well-connected Graphs , 2006, Proceedings of the 45th IEEE Conference on Decision and Control.

[36]  Jure Leskovec,et al.  The Network Completion Problem: Inferring Missing Nodes and Edges in Networks , 2011, SDM.

[37]  M. Fiedler Algebraic connectivity of graphs , 1973 .

[38]  M. Newman,et al.  Vertex similarity in networks. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[39]  Andrew V. Knyazev,et al.  Toward the Optimal Preconditioned Eigensolver: Locally Optimal Block Preconditioned Conjugate Gradient Method , 2001, SIAM J. Sci. Comput..

[40]  Reza Olfati-Saber,et al.  Consensus and Cooperation in Networked Multi-Agent Systems , 2007, Proceedings of the IEEE.

[41]  John D. Lafferty,et al.  Diffusion Kernels on Graphs and Other Discrete Input Spaces , 2002, ICML.

[42]  Dengfeng Sun,et al.  Algebraic connectivity maximization of an air transportation network: The flight routes' addition/deletion problem , 2012 .

[43]  Shang-Hua Teng,et al.  Nearly-Linear Time Algorithms for Preconditioning and Solving Symmetric, Diagonally Dominant Linear Systems , 2006, SIAM J. Matrix Anal. Appl..

[44]  Leman Akoglu,et al.  Optimizing network robustness by edge rewiring: a general framework , 2016, Data Mining and Knowledge Discovery.

[45]  Achi Brandt,et al.  Lean Algebraic Multigrid (LAMG): Fast Graph Laplacian Linear Solver , 2011, SIAM J. Sci. Comput..