Bandit Algorithm Driven by a Classical Random Walk and a Quantum Walk

Quantum walks (QWs) have a property that classical random walks (RWs) do not possess—the coexistence of linear spreading and localization—and this property is utilized to implement various kinds of applications. This paper proposes RW- and QW-based algorithms for multi-armed-bandit (MAB) problems. We show that, under some settings, the QW-based model realizes higher performance than the corresponding RW-based one by associating the two operations that make MAB problems difficult—exploration and exploitation—with these two behaviors of QWs.

[1]  Haiquan Wang,et al.  Three-state quantum walks on cycles , 2022, International Journal of Modern Physics B.

[2]  Chusei Kiumi Localization of space-inhomogeneous three-state quantum walks , 2021, Journal of Physics A: Mathematical and Theoretical.

[3]  I. Pris ON QUANTUM PROBABILITY , 2022, Философия науки.

[4]  Etsuo Segawa,et al.  General condition of quantum teleportation by one-dimensional quantum walks , 2021, Quantum Information Processing.

[5]  Bibhas Adhikari,et al.  Periodicity of lively quantum walks on cycles with generalized Grover coin , 2020, ArXiv.

[6]  A. H. Werner,et al.  Singular continuous Cantor spectrum for magnetic quantum walks , 2019, Letters in Mathematical Physics.

[7]  Muhammad Sajid,et al.  One-dimensional quantum walks with a position-dependent coin , 2019, Communications in Theoretical Physics.

[8]  Chris Godsil,et al.  Discrete-time quantum walks and graph structures , 2017, J. Comb. Theory, Ser. A.

[9]  N. Konno A new time-series model based on quantum walk , 2018, 1801.04805.

[10]  André Souto,et al.  Quantum key distribution with quantum walks , 2017, Quantum Inf. Process..

[11]  Iwao Sato,et al.  Partition-based discrete-time quantum walks , 2017, Quantum Inf. Process..

[12]  Yun Shang,et al.  Generalized teleportation by quantum walks , 2017, Quantum Inf. Process..

[13]  Song-Ju Kim,et al.  Harnessing the Computational Power of Fluids for Optimization of Collective Decision Making , 2016 .

[14]  N. Konno,et al.  New theory of diffusive and coherent nature of optical wave via a quantum walk , 2016, 1610.02393.

[15]  Akito Suzuki,et al.  Asymptotic velocity of a position-dependent quantum walk , 2015, Quantum Inf. Process..

[16]  Renato Portugal,et al.  The staggered quantum walk model , 2015, Quantum Information Processing.

[17]  Jaroslaw Adam Miszczak,et al.  Lively quantum walks on cycles , 2015, ArXiv.

[18]  Norio Kawakami,et al.  Unveiling hidden topological phases of a one-dimensional Hadamard quantum walk , 2015, 1505.03264.

[19]  E. Segawa,et al.  Isotope-selective dissociation of diatomic molecules by terahertz optical pulses , 2015 .

[20]  J. Bourgain,et al.  Communications in Mathematical Physics Quantum Recurrence of a Subspace and Operator-Valued Schur Functions , 2022 .

[21]  Jingbo B. Wang,et al.  Physical Implementation of Quantum Walks , 2013 .

[22]  Hideaki Obuse,et al.  Bulk-boundary correspondence for chiral symmetric quantum walks , 2013, 1303.1199.

[23]  Andrew M. Childs,et al.  Universal Computation by Multiparticle Quantum Walk , 2012, Science.

[24]  Etsuo Segawa,et al.  Limit measures of inhomogeneous discrete-time quantum walks in one dimension , 2011, Quantum Inf. Process..

[25]  Salvador Elías Venegas-Andraca,et al.  Quantum walks: a comprehensive review , 2012, Quantum Information Processing.

[26]  Tatsuya Tate,et al.  Asymptotic behavior of quantum walks on the line , 2011, 1108.1878.

[27]  H. Vincent Poor,et al.  Cognitive Medium Access: Exploration, Exploitation, and Competition , 2007, IEEE Transactions on Mobile Computing.

[28]  Hosho Katsura,et al.  Localization and fractality in inhomogeneous quantum walks with self-duality. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[29]  Norio Konno,et al.  Localization of an inhomogeneous discrete-time quantum walk on the line , 2009, Quantum Inf. Process..

[30]  Noah Linden,et al.  Inhomogeneous quantum walks , 2009, 0906.3692.

[31]  Andrew M. Childs,et al.  Universal computation by quantum walk. , 2008, Physical review letters.

[32]  Vivien M. Kendon,et al.  Decoherence in quantum walks – a review , 2006, Mathematical Structures in Computer Science.

[33]  P. Dayan,et al.  Cortical substrates for exploratory decisions in humans , 2006, Nature.

[34]  N. Konno,et al.  One-dimensional three-state quantum walk. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[35]  Apoorva D. Patel,et al.  Quantum random walks do not need a coin toss , 2004, quant-ph/0405128.

[36]  M. Szegedy,et al.  Quantum Walk Based Search Algorithms , 2008, TAMC.

[37]  Julia Kempe,et al.  Quantum random walks: An introductory overview , 2003, quant-ph/0303081.

[38]  Norio Konno,et al.  A new type of limit theorems for the one-dimensional quantum random walk , 2002, quant-ph/0206103.

[39]  N. Konno Quantum Random Walks in One Dimension , 2002, Quantum Inf. Process..

[40]  Andris Ambainis,et al.  One-dimensional quantum walks , 2001, STOC '01.

[41]  Aharonov,et al.  Quantum Walks , 2012, 1207.7283.

[42]  Lov K. Grover A fast quantum mechanical algorithm for database search , 1996, STOC '96.

[43]  D. Meyer On the absence of homogeneous scalar unitary cellular automata , 1996, quant-ph/9604011.

[44]  D. Meyer From quantum cellular automata to quantum lattice gases , 1996, quant-ph/9604003.

[45]  Nicolò Cesa-Bianchi,et al.  Gambling in a rigged casino: The adversarial multi-armed bandit problem , 1995, Proceedings of IEEE 36th Annual Foundations of Computer Science.

[46]  Aharonov,et al.  Quantum random walks. , 1993, Physical review. A, Atomic, molecular, and optical physics.

[47]  H. Robbins Some aspects of the sequential design of experiments , 1952 .