A Hybrid High-Order Method for Nonlinear Elasticity

In this work we propose and analyze a novel Hybrid High-Order discretization of a class of (linear and) nonlinear elasticity models in the small deformation regime which are of common use in solid mechanics. The proposed method is valid in two and three space dimensions, it supports general meshes including polyhedral elements and nonmatching interfaces, enables arbitrary approximation order, and the resolution cost can be reduced by statically condensing a large subset of the unknowns for linearized versions of the problem. Additionally, the method satisfies a local principle of virtual work inside each mesh element, with interface tractions that obey the law of action and reaction. A complete analysis covering very general stress-strain laws is carried out, and optimal error estimates are proved. Extensive numerical validation on model test problems is also provided.

[1]  Serge Nicaise,et al.  An a posteriori error estimator for the Lamé equation based on equilibrated fluxes , 2007 .

[2]  J. Lions,et al.  Inequalities in mechanics and physics , 1976 .

[3]  L. Evans Measure theory and fine properties of functions , 1992 .

[4]  R. Ogden,et al.  On the third- and fourth-order constants of incompressible isotropic elasticity. , 2010, The Journal of the Acoustical Society of America.

[5]  R. Eymard,et al.  3D Benchmark on Discretization Schemes for Anisotropic Diffusion Problems on General Grids , 2008 .

[6]  Jerome Droniou,et al.  $W^{s,p}$-approximation properties of elliptic projectors on polynomial spaces, with application to the error analysis of a Hybrid High-Order discretisation of Leray-Lions problems , 2016 .

[7]  Liping Liu THEORY OF ELASTICITY , 2012 .

[8]  A. Ern,et al.  Mathematical Aspects of Discontinuous Galerkin Methods , 2011 .

[9]  Bishnu P. Lamichhane,et al.  Gradient schemes for linear and non-linear elasticity equations , 2014, Numerische Mathematik.

[10]  Peter Wriggers,et al.  A virtual element method for contact , 2016 .

[11]  G. Minty,et al.  ON A "MONOTONICITY" METHOD FOR THE SOLUTION OF NONLINEAR EQUATIONS IN BANACH SPACES. , 1963, Proceedings of the National Academy of Sciences of the United States of America.

[12]  M. Pitteri,et al.  Continuum Models for Phase Transitions and Twinning in Crystals , 2002 .

[13]  Thierry Gallouët,et al.  The Gradient Discretisation Method , 2018 .

[14]  Daniele A. Di Pietro,et al.  An extension of the Crouzeix-Raviart space to general meshes with application to quasi-incompressible linear elasticity and Stokes flow , 2014, Math. Comput..

[15]  Glaucio H. Paulino,et al.  Unstructured polygonal meshes with adaptive refinement for the numerical simulation of dynamic cohesive fracture , 2014, International Journal of Fracture.

[16]  G. Gatica,et al.  A priori and a posteriori error analyses of augmented twofold saddle point formulations for nonlinear elasticity problems , 2013 .

[17]  D. S. Hughes,et al.  Second-Order Elastic Deformation of Solids , 1953 .

[18]  D. J. Montgomery,et al.  The physics of rubber elasticity , 1949 .

[19]  Jindřich Nečas,et al.  Introduction to the Theory of Nonlinear Elliptic Equations , 1986 .

[20]  Jérôme Droniou,et al.  Finite volume schemes for fully non-linear elliptic equations in divergence form , 2006 .

[21]  Gabriel N. Gatica,et al.  A mixed finite element method for nonlinear elasticity: two-fold saddle point approach and a-posteriori error estimate , 2002, Numerische Mathematik.

[22]  F. Browder Nonlinear functional analysis , 1970 .

[23]  A. Ern,et al.  A Hybrid High-Order method for the incompressible Navier-Stokes equations based on Temam's device , 2018, J. Comput. Phys..

[24]  Glaucio H. Paulino,et al.  Reduction in mesh bias for dynamic fracture using adaptive splitting of polygonal finite elements , 2014 .

[25]  H. Brezis Functional Analysis, Sobolev Spaces and Partial Differential Equations , 2010 .

[26]  Jérôme Droniou,et al.  A Hybrid High-Order method for Leray-Lions elliptic equations on general meshes , 2015, Math. Comput..

[27]  Daniele A. Di Pietro,et al.  An introduction to Hybrid High-Order methods , 2017, 1703.05136.

[28]  P. Tesini,et al.  On the flexibility of agglomeration based physical space discontinuous Galerkin discretizations , 2012, J. Comput. Phys..

[29]  Ruben Specogna,et al.  An a posteriori-driven adaptive Mixed High-Order method with application to electrostatics , 2016, J. Comput. Phys..

[30]  Lourenço Beirão da Veiga,et al.  Virtual Elements for Linear Elasticity Problems , 2013, SIAM J. Numer. Anal..

[31]  Gianmarco Manzini,et al.  Discontinuous Skeletal Gradient Discretisation methods on polytopal meshes , 2017, J. Comput. Phys..

[32]  R. Codina,et al.  Mixed stabilized finite element methods in nonlinear solid mechanics: Part II: Strain localization , 2010 .

[33]  G. Paulino,et al.  PolyMesher: a general-purpose mesh generator for polygonal elements written in Matlab , 2012 .

[34]  S. Nicaise,et al.  A locking-free discontinuous Galerkin method for linear elasticity in locally nearly incompressible heterogeneous media , 2013 .

[35]  Gabriel N. Gatica,et al.  Coupling of Mixed Finite Elements and Boundary Elements for A Hyperelastic Interface Problem , 1997 .

[36]  Glaucio H. Paulino,et al.  Polygonal finite elements for finite elasticity , 2015 .

[37]  Bernardo Cockburn,et al.  A hybridizable discontinuous Galerkin method for linear elasticity , 2009 .

[38]  Hyunjoong Kim,et al.  Functional Analysis I , 2017 .

[39]  Alexandre Ern,et al.  A Discontinuous-Skeletal Method for Advection-Diffusion-Reaction on General Meshes , 2015, SIAM J. Numer. Anal..

[40]  Junping Wang,et al.  A weak Galerkin mixed finite element method for second order elliptic problems , 2012, Math. Comput..

[41]  Susanne C. Brenner,et al.  Korn's inequalities for piecewise H1 vector fields , 2003, Math. Comput..

[42]  Peter Wriggers,et al.  Polygonal finite element methods for contact-impact problems on non-conformal meshes , 2014 .

[43]  C. Bi,et al.  Discontinuous Galerkin method for monotone nonlinear elliptic problems , 2012 .

[44]  L. Beirao da Veiga,et al.  A Virtual Element Method for elastic and inelastic problems on polytope meshes , 2015, 1503.02042.

[45]  Endre Süli,et al.  Discontinuous Galerkin Finite Element Approximation of Nonlinear Second-Order Elliptic and Hyperbolic Systems , 2007, SIAM J. Numer. Anal..

[46]  Mark Ainsworth,et al.  A posteriori error estimators for second order elliptic systems part 2. An optimal order process for calculating self-equilibrating fluxes , 1993 .

[47]  Gabriel N. Gatica,et al.  A mixed‐FEM formulation for nonlinear incompressible elasticity in the plane , 2002 .

[48]  Ruishu Wang,et al.  A locking-free weak Galerkin finite element method for elasticity problems in the primal formulation , 2015, J. Comput. Appl. Math..