Effects of the Mn/Co ratio on the magnetic transition and magnetocaloric properties of Mn 1+ x Co 1- x Ge alloys

We have investigated the magnetic transition and magnetocaloric effects of Mn1+xCo1−xGe alloys by tuning the ratio of Mn/Co. With increasing Mn content, a series of first-order magnetostructural transitions from ferromagnetic to paramagnetic states with large changes of magnetization are observed at room temperature. Further increasing the content of Mn (x = 0.11) gives rise to a single second-order magnetic transition. Interestingly, large low-field magnetic entropy changes with almost zero magnetic hysteresis are observed in these alloys. The effects of Mn/Co ratio on magnetic transition and magnetocaloric effects are discussed in this paper.

[1]  D. H. Wang,et al.  The martensitic transformation, magnetocaloric effect, and magnetoresistance in high-Mn content Mn47+xNi43−xSn10 ferromagnetic shape memory alloys , 2010 .

[2]  A. Pathak,et al.  Large inverse magnetic entropy changes and magnetoresistance in the vicinity of a field-induced martensitic transformation in Ni50−xCoxMn32−yFeyGa18 , 2010 .

[3]  A. Yücel,et al.  Giant magnetocaloric effect in Tb5Ge2–xSi2–xMn2x compounds , 2010 .

[4]  N. Trung,et al.  Giant magnetocaloric effects by tailoring the phase transitions , 2010 .

[5]  N. Trung,et al.  From single- to double-first-order magnetic phase transition in magnetocaloric Mn1−xCrxCoGe compounds , 2010 .

[6]  I. Dincer,et al.  Giant magnetocaloric effect in the Gd 5 Ge 2.025 Si 1.925 In 0.05 compound , 2010 .

[7]  J. L. Chen,et al.  Vacancy-tuned paramagnetic/ferromagnetic martensitic transformation in Mn-poor Mn1-xCoGe alloys , 2010, 1003.0489.

[8]  V. Amaral,et al.  The effect of magnetic irreversibility on estimating the magnetocaloric effect from magnetization measurements , 2009 .

[9]  P. Ranke,et al.  Magnetocaloric effect around a magnetic phase transition , 2008 .

[10]  Y. Fang,et al.  Large low-field magnetocaloric effect in MnCo0.95Ge1.14 alloy , 2007 .

[11]  UK.,et al.  Phase diagram and magnetocaloric effect of CoMnGe1-xSnx alloys , 2007, 0708.0204.

[12]  D. H. Wang,et al.  Erratum: “Low-field inverse magnetocaloric effect in Ni50−xMn39+xSn11 Heusler alloys” [Appl. Phys. Lett. 90, 042507 (2007)] , 2007 .

[13]  D. H. Wang,et al.  Low-field inverse magnetocaloric effect in Ni50−xMn39+xSn11 Heusler alloys , 2007 .

[14]  Jirong Sun,et al.  Determination of the entropy changes in the compounds with a first-order magnetic transition , 2007 .

[15]  Yoshiyuki Kawazoe,et al.  Vacancy induced structural and magnetic transition in MnCo1−xGe , 2006 .

[16]  V. Sharma,et al.  Large magnetoresistance in Ni50Mn34In16 alloy , 2006 .

[17]  K. Buschow,et al.  Structural and Magnetic Properties of MnFe$_1 - rm x$Co$_rm x$Ge Compounds , 2006, IEEE Transactions on Magnetics.

[18]  X. Moya,et al.  Ferromagnetism in the austenitic and martensitic states of Ni-Mn-In alloys , 2006 .

[19]  K. Ishida,et al.  Magnetic-field-induced shape recovery by reverse phase transformation , 2006, Nature.

[20]  X. Moya,et al.  Martensitic transitions and the nature of ferromagnetism in the austenitic and martensitic states of Ni-Mn-Sn alloys , 2005 .

[21]  X. Moya,et al.  Inverse magnetocaloric effect in ferromagnetic Ni–Mn–Sn alloys , 2005, Nature materials.

[22]  Kazuo Watanabe,et al.  Field-Induced Martensitic Transformation in New Ferromagnetic Shape Memory Compound Mn1.07Co0.92Ge , 2004 .

[23]  F. D. Boer,et al.  Transition-metal-based magnetic refrigerants for room-temperature applications , 2002, Nature.

[24]  F. Hu,et al.  Influence of negative lattice expansion and metamagnetic transition on magnetic entropy change in the compound LaFe11.4Si1.6 , 2001 .

[25]  T. Kaneko,et al.  Magneto-volume effect of MnCo1-xGe(0≤x≤0.2) , 1995 .

[26]  S. Kaprzyk,et al.  The electronic structure of CoMnGe with the hexagonal and orthorhombic crystal structure , 1990 .

[27]  L. Dmowski,et al.  Structural and magnetic phase transitions in CoxNi1−xMnGe system under pressure , 1983 .