Conditional reachability of uncertain Max Plus Linear systems

Abstract The reachability analysis problem of Max Plus Linear (MPL) systems has been properly solved using the Difference-Bound Matrices approach. In this work, the same approach is considered in order to solve the reachability analysis problem of MPL systems subjected to bounded noise, disturbances and/or modeling errors, called uncertain MPL (uMPL) systems. Moreover, using the results on the reachability analysis of uMPL systems, we solve the conditional reachability problem, herein defined as the support calculation of the probability density function involved in the stochastic filtering problem.

[1]  Laurent Hardouin,et al.  On the Steady-State Control of Timed Event Graphs With Firing Date Constraints , 2016, IEEE Transactions on Automatic Control.

[2]  Alessandro Abate,et al.  VeriSiMPL 2: An open-source software for the verification of max-plus-linear systems , 2016, Discret. Event Dyn. Syst..

[3]  Jean Jacques Loiseau,et al.  Duality Between Invariant Spaces for Max-Plus Linear Discrete Event Systems , 2009, SIAM J. Control. Optim..

[4]  David L. Dill,et al.  Timing Assumptions and Verification of Finite-State Concurrent Systems , 1989, Automatic Verification Methods for Finite State Systems.

[5]  Geert Jan Olsder,et al.  Max Plus at Work: Modeling and Analysis of Synchronized Systems: A Course on Max-Plus Algebra and Its Applications , 2005 .

[6]  N. Gordon,et al.  Novel approach to nonlinear/non-Gaussian Bayesian state estimation , 1993 .

[7]  Ton J.J. van den Boom,et al.  Robust control of constrained max‐plus‐linear systems , 2009 .

[8]  L. Hardouin,et al.  Duality and interval analysis over idempotent semirings , 2012, 1306.1129.

[9]  Grigori L. Litvinov,et al.  Idempotent Interval Analysis and Optimization Problems , 2001, Reliab. Comput..

[10]  Bertrand Cottenceau,et al.  Max-plus linear observer: Application to manufacturing systems , 2010, WODES.

[11]  Helena Myšková,et al.  Interval systems of max-separable linear equations , 2005 .

[12]  Laurent Hardouin,et al.  Modeling and control of high-throughput screening systems , 2012 .

[13]  Richard Bellman,et al.  ON A ROUTING PROBLEM , 1958 .

[14]  Bart De Schutter,et al.  Equivalence of hybrid dynamical models , 2001, Autom..

[15]  Isabel Demongodin,et al.  Max-Plus Control Design for Temporal Constraints Meeting in Timed Event Graphs , 2012, IEEE Transactions on Automatic Control.

[16]  Kim G. Larsen,et al.  Reachability analysis for timed automata using max-plus algebra , 2012, J. Log. Algebraic Methods Program..

[17]  G. Olsder,et al.  Discrete event systems with stochastic processing times , 1990 .

[18]  Bertrand Cottenceau,et al.  Interval systems over idempotent semiring , 2009, 1306.1136.

[19]  Edward W. Kamen,et al.  Reachability and observability of linear systems over max-plus , 1999, Kybernetika.

[20]  Katarína Cechlárová,et al.  Interval systems of max-separable linear equations , 2002 .

[21]  Bart De Schutter,et al.  Computational techniques for reachability analysis of Max-Plus-Linear systems , 2015, Autom..

[22]  Alberto Bemporad,et al.  Observability and controllability of piecewise affine and hybrid systems , 2000, IEEE Trans. Autom. Control..

[23]  Bart De Schutter,et al.  Model predictive control for perturbed max-plus-linear systems , 2002, Syst. Control. Lett..

[24]  Ricardo Katz Max-Plus $(A,B)$-Invariant Spaces and Control of Timed Discrete-Event Systems , 2007, IEEE Transactions on Automatic Control.

[25]  Bart De Schutter,et al.  Finite Abstractions of Max-Plus-Linear Systems , 2013, IEEE Transactions on Automatic Control.

[26]  J. Quadrat,et al.  Max-Plus Algebra and System Theory: Where We Are and Where to Go Now , 1999 .