A Compressed Sensing Approach for Distribution Matching
暂无分享,去创建一个
[1] Nicolas Macris,et al. Proof of threshold saturation for spatially coupled sparse superposition codes , 2016, 2016 IEEE International Symposium on Information Theory (ISIT).
[2] David J. C. MacKay,et al. Good Error-Correcting Codes Based on Very Sparse Matrices , 1997, IEEE Trans. Inf. Theory.
[3] Ramji Venkataramanan,et al. Capacity-Achieving Sparse Superposition Codes via Approximate Message Passing Decoding , 2015, IEEE Transactions on Information Theory.
[4] Florent Krzakala,et al. Approximate message-passing with spatially coupled structured operators, with applications to compressed sensing and sparse superposition codes , 2013, 1312.1740.
[5] G. David Forney,et al. Efficient Modulation for Band-Limited Channels , 1984, IEEE J. Sel. Areas Commun..
[6] S. Shamai,et al. Lossless data compression with error correcting codes , 2003, IEEE International Symposium on Information Theory, 2003. Proceedings..
[7] Andrew R. Barron,et al. Toward fast reliable communication at rates near capacity with Gaussian noise , 2010, 2010 IEEE International Symposium on Information Theory.
[8] Andrea Montanari,et al. Message-passing algorithms for compressed sensing , 2009, Proceedings of the National Academy of Sciences.
[9] Emmanuel J. Candès,et al. Near-Optimal Signal Recovery From Random Projections: Universal Encoding Strategies? , 2004, IEEE Transactions on Information Theory.
[10] Nicolas Macris,et al. Universal Sparse Superposition Codes With Spatial Coupling and GAMP Decoding , 2017, IEEE Transactions on Information Theory.
[11] S. Frick,et al. Compressed Sensing , 2014, Computer Vision, A Reference Guide.
[12] Harm S. Cronie,et al. Lossless source coding with polar codes , 2010, 2010 IEEE International Symposium on Information Theory.
[13] Fabian Steiner,et al. Comparison of Geometric and Probabilistic Shaping with Application to ATSC 3.0 , 2016, ArXiv.
[14] Nicolas Macris,et al. Threshold saturation of spatially coupled sparse superposition codes for all memoryless channels , 2016, 2016 IEEE Information Theory Workshop (ITW).
[15] Georg Böcherer,et al. Fixed-to-variable length distribution matching , 2013, 2013 IEEE International Symposium on Information Theory.
[16] Florent Krzakala,et al. Approximate Message-Passing Decoder and Capacity Achieving Sparse Superposition Codes , 2015, IEEE Transactions on Information Theory.
[17] Sundeep Rangan,et al. Generalized approximate message passing for estimation with random linear mixing , 2010, 2011 IEEE International Symposium on Information Theory Proceedings.
[18] Rüdiger L. Urbanke,et al. How to achieve the capacity of asymmetric channels , 2014, 2014 52nd Annual Allerton Conference on Communication, Control, and Computing (Allerton).
[19] Rudolf Mathar,et al. Matching Dyadic Distributions to Channels , 2010, 2011 Data Compression Conference.
[20] Georg Böcherer,et al. Arithmetic Distribution Matching , 2014, ArXiv.
[21] Sundeep Rangan,et al. Message-Passing De-Quantization With Applications to Compressed Sensing , 2012, IEEE Transactions on Signal Processing.
[22] Ning Cai,et al. Probabilistic Capacity and Optimal Coding for Asynchronous Channel , 2007, 2007 IEEE Information Theory Workshop.
[23] Patrick Schulte,et al. Constant Composition Distribution Matching , 2015, IEEE Transactions on Information Theory.
[24] Frank R. Kschischang,et al. Optimal nonuniform signaling for Gaussian channels , 1993, IEEE Trans. Inf. Theory.
[25] Erdem Biyik,et al. Generalized approximate message-passing decoder for universal sparse superposition codes , 2017, 2017 IEEE International Symposium on Information Theory (ISIT).