A Compressed Sensing Approach for Distribution Matching

In this work, we formulate the fixed-length distribution matching as a Bayesian inference problem. Our proposed solution is inspired from the compressed sensing paradigm and the sparse superposition (SS) codes. First, we introduce sparsity in the binary source via position modulation (PM). We then present a simple and exact matcher based on Gaussian signal quantization. At the receiver, the dematcher exploits the sparsity in the source and performs low-complexity dematching based on generalized approximate message-passing (GAMP). We show that GAMP dematcher and spatial coupling lead to an asymptotically optimal performance, in the sense that the rate tends to the entropy of the target distribution with vanishing reconstruction error in a proper limit. Furthermore, we assess the performance of the dematcher on practical Hadamard-based operators. A remarkable inherent feature of our proposed solution is the possibility to: $i$) perform matching at the symbol level (nonbinary); ii) perform joint channel coding and matching.

[1]  Nicolas Macris,et al.  Proof of threshold saturation for spatially coupled sparse superposition codes , 2016, 2016 IEEE International Symposium on Information Theory (ISIT).

[2]  David J. C. MacKay,et al.  Good Error-Correcting Codes Based on Very Sparse Matrices , 1997, IEEE Trans. Inf. Theory.

[3]  Ramji Venkataramanan,et al.  Capacity-Achieving Sparse Superposition Codes via Approximate Message Passing Decoding , 2015, IEEE Transactions on Information Theory.

[4]  Florent Krzakala,et al.  Approximate message-passing with spatially coupled structured operators, with applications to compressed sensing and sparse superposition codes , 2013, 1312.1740.

[5]  G. David Forney,et al.  Efficient Modulation for Band-Limited Channels , 1984, IEEE J. Sel. Areas Commun..

[6]  S. Shamai,et al.  Lossless data compression with error correcting codes , 2003, IEEE International Symposium on Information Theory, 2003. Proceedings..

[7]  Andrew R. Barron,et al.  Toward fast reliable communication at rates near capacity with Gaussian noise , 2010, 2010 IEEE International Symposium on Information Theory.

[8]  Andrea Montanari,et al.  Message-passing algorithms for compressed sensing , 2009, Proceedings of the National Academy of Sciences.

[9]  Emmanuel J. Candès,et al.  Near-Optimal Signal Recovery From Random Projections: Universal Encoding Strategies? , 2004, IEEE Transactions on Information Theory.

[10]  Nicolas Macris,et al.  Universal Sparse Superposition Codes With Spatial Coupling and GAMP Decoding , 2017, IEEE Transactions on Information Theory.

[11]  S. Frick,et al.  Compressed Sensing , 2014, Computer Vision, A Reference Guide.

[12]  Harm S. Cronie,et al.  Lossless source coding with polar codes , 2010, 2010 IEEE International Symposium on Information Theory.

[13]  Fabian Steiner,et al.  Comparison of Geometric and Probabilistic Shaping with Application to ATSC 3.0 , 2016, ArXiv.

[14]  Nicolas Macris,et al.  Threshold saturation of spatially coupled sparse superposition codes for all memoryless channels , 2016, 2016 IEEE Information Theory Workshop (ITW).

[15]  Georg Böcherer,et al.  Fixed-to-variable length distribution matching , 2013, 2013 IEEE International Symposium on Information Theory.

[16]  Florent Krzakala,et al.  Approximate Message-Passing Decoder and Capacity Achieving Sparse Superposition Codes , 2015, IEEE Transactions on Information Theory.

[17]  Sundeep Rangan,et al.  Generalized approximate message passing for estimation with random linear mixing , 2010, 2011 IEEE International Symposium on Information Theory Proceedings.

[18]  Rüdiger L. Urbanke,et al.  How to achieve the capacity of asymmetric channels , 2014, 2014 52nd Annual Allerton Conference on Communication, Control, and Computing (Allerton).

[19]  Rudolf Mathar,et al.  Matching Dyadic Distributions to Channels , 2010, 2011 Data Compression Conference.

[20]  Georg Böcherer,et al.  Arithmetic Distribution Matching , 2014, ArXiv.

[21]  Sundeep Rangan,et al.  Message-Passing De-Quantization With Applications to Compressed Sensing , 2012, IEEE Transactions on Signal Processing.

[22]  Ning Cai,et al.  Probabilistic Capacity and Optimal Coding for Asynchronous Channel , 2007, 2007 IEEE Information Theory Workshop.

[23]  Patrick Schulte,et al.  Constant Composition Distribution Matching , 2015, IEEE Transactions on Information Theory.

[24]  Frank R. Kschischang,et al.  Optimal nonuniform signaling for Gaussian channels , 1993, IEEE Trans. Inf. Theory.

[25]  Erdem Biyik,et al.  Generalized approximate message-passing decoder for universal sparse superposition codes , 2017, 2017 IEEE International Symposium on Information Theory (ISIT).