Crystallography and chemistry should always go together: a cautionary tale of protein complexes with cisplatin and carboplatin.

The anticancer activity of platinum-containing drugs such as cisplatin and carboplatin is considered to primarily arise from their interactions with nucleic acids; nevertheless, these drugs, or the products of their hydrolysis, also bind to proteins, potentially leading to the known side effects of the treatments. Here, over 40 crystal structures deposited in the Protein Data Bank (PDB) of cisplatin and carboplatin complexes of several proteins were analysed. Significant problems of either a crystallographic or a chemical nature were found in most of the presented atomic models and they could be traced to less or more serious deficiencies in the data-collection and refinement procedures. The re-evaluation of these data and models was possible thanks to their mandatory or voluntary deposition in publicly available databases, emphasizing the point that the availability of such data is critical for making structural science reproducible. Based on this analysis of a selected group of macromolecular structures, the importance of deposition of raw diffraction data is stressed and a procedure for depositing, tracking and using re-refined crystallographic models is suggested.

[1]  N. Pannu,et al.  REFMAC5 for the refinement of macromolecular crystal structures , 2011, Acta crystallographica. Section D, Biological crystallography.

[2]  R. Gust,et al.  Investigations on the Stability of Carboplatin Infusion Solutions , 1999 .

[3]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[4]  Zbigniew Dauter,et al.  The quality and validation of structures from structural genomics. , 2014, Methods in molecular biology.

[5]  Audrey L Lamb,et al.  You are lost without a map: Navigating the sea of protein structures. , 2015, Biochimica et biophysica acta.

[6]  John R. Helliwell,et al.  Experience with exchange and archiving of raw data: comparison of data from two diffractometers and four software packages on a series of lysozyme crystals , 2012, Journal of applied crystallography.

[7]  Dong Wang,et al.  Cellular processing of platinum anticancer drugs , 2005, Nature Reviews Drug Discovery.

[8]  M. Jakupec,et al.  Guanidine platinum(II) complexes: synthesis, in vitro antitumor activity, and DNA interactions , 2014, Journal of inorganic biochemistry.

[9]  W. Bragg,et al.  The Structure of Some Crystals as Indicated by Their Diffraction of X-rays , 1913 .

[10]  Bernhard Rupp,et al.  Visualizing ligand molecules in Twilight electron density. , 2013, Acta crystallographica. Section F, Structural biology and crystallization communications.

[11]  Wladek Minor,et al.  HKL-3000: the integration of data reduction and structure solution--from diffraction images to an initial model in minutes. , 2006, Acta crystallographica. Section D, Biological crystallography.

[12]  Krista Joosten,et al.  PDB_REDO: constructive validation, more than just looking for errors , 2012, Acta crystallographica. Section D, Biological crystallography.

[13]  A. A. Milne,et al.  プー横丁にたった家 = The house at Pooh Corner , 1998 .

[14]  John R. Helliwell,et al.  Experiences with archived raw diffraction images data: capturing cisplatin after chemical conversion of carboplatin in high salt conditions for a protein crystal , 2013, Journal of synchrotron radiation.

[15]  Manfred S. Weiss,et al.  Global indicators of X-ray data quality , 2001 .

[16]  J Otlewski,et al.  Ultrahigh-resolution structure of a BPTI mutant. , 2001, Acta crystallographica. Section D, Biological crystallography.

[17]  Vincent B. Chen,et al.  Correspondence e-mail: , 2000 .

[18]  A. Casini,et al.  Structural investigation of cisplatin-protein interactions: selective platination of His19 in a cuprozinc superoxide dismutase. , 2006, Angewandte Chemie.

[19]  M. Jaskólski On the propagation of errors. , 2013, Acta crystallographica. Section D, Biological crystallography.

[20]  J. Helliwell,et al.  Structural dynamics of cisplatin binding to histidine in a protein , 2014, Structural dynamics.

[21]  Zbigniew Dauter,et al.  ACHESYM: an algorithm and server for standardized placement of macromolecular models in the unit cell. , 2014, Acta crystallographica. Section D, Biological crystallography.

[22]  Randy J. Read,et al.  Crystallography: Crystallographic evidence for deviating C3b structure , 2007, Nature.

[23]  S. Lippard New chemistry of an old molecule: cis-[Pt(NH3)2Cl2]. , 1982, Science.

[24]  J Christodoulou,et al.  Cisplatin Binding Sites on Human Albumin* , 1998, The Journal of Biological Chemistry.

[25]  A. Rosenzweig,et al.  Crystal structures of cisplatin bound to a human copper chaperone. , 2009, Journal of the American Chemical Society.

[26]  John R Helliwell,et al.  Response from Tanley et al. to Crystallography and chemistry should always go together: a cautionary tale of protein complexes with cisplatin and carboplatin. , 2015, Acta crystallographica. Section D, Biological crystallography.

[27]  Randy J. Read,et al.  Overview of the CCP4 suite and current developments , 2011, Acta crystallographica. Section D, Biological crystallography.

[28]  Thomas C. Terwilliger,et al.  Continuous mutual improvement of macromolecular structure models in the PDB and of X-ray crystallographic software: the dual role of deposited experimental data , 2014, Acta crystallographica. Section D, Biological crystallography.

[29]  D. Phillips,et al.  THE HEN EGG-WHITE LYSOZYME MOLECULE , 1967 .

[30]  J. Thornton,et al.  PROCHECK: a program to check the stereochemical quality of protein structures , 1993 .

[31]  Randy J. Read,et al.  A New Generation of Crystallographic Validation Tools for the Protein Data Bank , 2011, Structure.

[32]  S. Lippard,et al.  Photoreactivity of platinum(II) in cisplatin-modified DNA affords specific cross-links to HMG domain proteins. , 1996, Biochemistry.

[33]  F. Allen The Cambridge Structural Database: a quarter of a million crystal structures and rising. , 2002, Acta crystallographica. Section B, Structural science.

[34]  Gerard J Kleywegt,et al.  ValLigURL: a server for ligand-structure comparison and validation. , 2007, Acta crystallographica. Section D, Biological crystallography.

[35]  M. Perutz Stereochemistry of Cooperative Effects in Haemoglobin: Haem–Haem Interaction and the Problem of Allostery , 1970, Nature.

[36]  A. Trapananti,et al.  Interaction of cisplatin with human superoxide dismutase. , 2012, Journal of the American Chemical Society.

[37]  Ian J. Tickle,et al.  Statistical quality indicators for electron-density maps , 2012, Acta crystallographica. Section D, Biological crystallography.

[38]  Kevin Cowtan,et al.  research papers Acta Crystallographica Section D Biological , 2005 .

[39]  Franz Stratmann The Tragicall Historie of Hamlet, Prince of Denmarke , 2009 .

[40]  T. A. Jones,et al.  The Uppsala Electron-Density Server. , 2004, Acta crystallographica. Section D, Biological crystallography.

[41]  T. Cech,et al.  The Ribosome Is a Ribozyme , 2000, Science.

[42]  London. Chemistry of Penicillin , 1945, Nature.

[43]  John R Helliwell,et al.  Room-temperature X-ray diffraction studies of cisplatin and carboplatin binding to His15 of HEWL after prolonged chemical exposure. , 2012, Acta crystallographica. Section F, Structural biology and crystallization communications.

[44]  T. N. Bhat,et al.  The Protein Data Bank , 2000, Nucleic Acids Res..

[45]  R. D. Berry,et al.  Reactions of platinum(II) aqua complexes. 1. Multinuclear (platinum-195, nitrogen-15, and phosphorus-31) NMR study of reactions between the cis-diamminediaquaplatinum(II) cation and the oxygen-donor ligands hydroxide, perchlorate, nitrate, sulfate, phosphate, and acetate , 1984 .

[46]  J. Helliwell,et al.  The binding of platinum hexahalides (Cl, Br and I) to hen egg-white lysozyme and the chemical transformation of the PtI6 octahedral complex to a PtI3 moiety bound to His15 , 2014, Acta crystallographica. Section F, Structural biology communications.

[47]  J. Helliwell,et al.  The crystal structure analysis of the relative binding of cisplatin and carboplatin in a mixture with histidine in a protein studied at 100 and 300 K with repeated X-ray irradiation. , 2013, Acta crystallographica. Section D, Biological crystallography.

[48]  J. Helliwell,et al.  Structural studies of the effect that dimethyl sulfoxide (DMSO) has on cisplatin and carboplatin binding to histidine in a protein. , 2012, Acta crystallographica. Section D, Biological crystallography.

[49]  Z. Otwinowski,et al.  [20] Processing of X-ray diffraction data collected in oscillation mode. , 1997, Methods in enzymology.

[50]  Jure Pražnikar,et al.  PURY: a database of geometric restraints of hetero compounds for refinement in complexes with macromolecular structures , 2008, Acta crystallographica. Section D, Biological crystallography.

[51]  Anthony L. Spek,et al.  Structure validation in chemical crystallography , 2009, Acta crystallographica. Section D, Biological crystallography.

[52]  C. Supuran,et al.  ESI mass spectrometry and X-ray diffraction studies of adducts between anticancer platinum drugs and hen egg white lysozyme. , 2007, Chemical communications.

[53]  Chemical conversion of cisplatin and carboplatin with histidine in a model protein crystallized under sodium iodide conditions , 2014, Acta crystallographica. Section F, Structural biology communications.

[54]  S J Wodak,et al.  SFCHECK: a unified set of procedures for evaluating the quality of macromolecular structure-factor data and their agreement with the atomic model. , 1999, Acta crystallographica. Section D, Biological crystallography.

[55]  C. Sander,et al.  Errors in protein structures , 1996, Nature.

[56]  Abhik Mukhopadhyay,et al.  Small molecule annotation for the Protein Data Bank , 2014, Database J. Biol. Databases Curation.

[57]  O. Pinato,et al.  Pt-based drugs: the spotlight will be on proteins. , 2014, Metallomics : integrated biometal science.

[58]  A. Brunger Free R value: a novel statistical quantity for assessing the accuracy of crystal structures. , 1992 .

[59]  Wladek Minor,et al.  Avoidable errors in deposited macromolecular structures: an impediment to efficient data mining , 2014, IUCrJ.

[60]  A. Merlino,et al.  Cisplatin binding to proteins: molecular structure of the ribonuclease a adduct. , 2014, Inorganic chemistry.