Hyperspectral Anomaly Detection by the Use of Background Joint Sparse Representation

In this paper, we propose a hyperspectral image anomaly detection model by the use of background joint sparse representation (BJSR). With a practical binary hypothesis test model, the proposed approach consists of the following steps. The adaptive orthogonal background complementary subspace is first estimated by the BJSR, which adaptively selects the most representative background bases for the local region. An unsupervised adaptive subspace detection method is then proposed to suppress the background and simultaneously highlight the anomaly component. The experimental results confirm that the proposed algorithm obtains a desirable detection performance and outperforms the classical RX-based anomaly detectors and the orthogonal subspace projection-based detectors.

[1]  Jun Guo,et al.  Extended SRC: Undersampled Face Recognition via Intraclass Variant Dictionary , 2012, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[2]  Emmanuel J. Candès,et al.  Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information , 2004, IEEE Transactions on Information Theory.

[3]  Yaakov Tsaig,et al.  Fast Solution of $\ell _{1}$ -Norm Minimization Problems When the Solution May Be Sparse , 2008, IEEE Transactions on Information Theory.

[4]  Guillermo Sapiro,et al.  Sparse Representation for Computer Vision and Pattern Recognition , 2010, Proceedings of the IEEE.

[5]  Chein-I Chang,et al.  Estimation of number of spectrally distinct signal sources in hyperspectral imagery , 2004, IEEE Transactions on Geoscience and Remote Sensing.

[6]  Liangpei Zhang,et al.  Hyperspectral Image Classification by Nonlocal Joint Collaborative Representation With a Locally Adaptive Dictionary , 2014, IEEE Transactions on Geoscience and Remote Sensing.

[7]  Mark J. Carlotto,et al.  A cluster-based approach for detecting man-made objects and changes in imagery , 2005, IEEE Transactions on Geoscience and Remote Sensing.

[8]  Liangpei Zhang,et al.  Sparse Transfer Manifold Embedding for Hyperspectral Target Detection , 2014, IEEE Transactions on Geoscience and Remote Sensing.

[9]  Amit Banerjee,et al.  A support vector method for anomaly detection in hyperspectral imagery , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[10]  Konstantinos Kalpakis,et al.  Low-rank decomposition-based anomaly detection , 2013, Defense, Security, and Sensing.

[11]  Peter Bühlmann Regression shrinkage and selection via the Lasso: a retrospective (Robert Tibshirani): Comments on the presentation , 2011 .

[12]  Trac D. Tran,et al.  Sparse Representation for Target Detection in Hyperspectral Imagery , 2011, IEEE Journal of Selected Topics in Signal Processing.

[13]  R.G. Baraniuk,et al.  Distributed Compressed Sensing of Jointly Sparse Signals , 2005, Conference Record of the Thirty-Ninth Asilomar Conference onSignals, Systems and Computers, 2005..

[14]  Chein-I Chang,et al.  Hyperspectral image classification and dimensionality reduction: an orthogonal subspace projection approach , 1994, IEEE Trans. Geosci. Remote. Sens..

[15]  E. M. Winter,et al.  Anomaly detection from hyperspectral imagery , 2002, IEEE Signal Process. Mag..

[16]  S Matteoli,et al.  A tutorial overview of anomaly detection in hyperspectral images , 2010, IEEE Aerospace and Electronic Systems Magazine.

[17]  Emmanuel J. Candès,et al.  Near-Optimal Signal Recovery From Random Projections: Universal Encoding Strategies? , 2004, IEEE Transactions on Information Theory.

[18]  Antonio J. Plaza,et al.  Total Variation Spatial Regularization for Sparse Hyperspectral Unmixing , 2012, IEEE Transactions on Geoscience and Remote Sensing.

[19]  A. Bruckstein,et al.  K-SVD : An Algorithm for Designing of Overcomplete Dictionaries for Sparse Representation , 2005 .

[20]  Joel A. Tropp,et al.  Algorithms for simultaneous sparse approximation. Part I: Greedy pursuit , 2006, Signal Process..

[21]  Michael Elad,et al.  Sparse and Redundant Representations - From Theory to Applications in Signal and Image Processing , 2010 .

[22]  José M. F. Moura,et al.  Hyperspectral imagery: Clutter adaptation in anomaly detection , 2000, IEEE Trans. Inf. Theory.

[23]  Saeid Homayouni,et al.  An Approach for Subpixel Anomaly Detection in Hyperspectral Images , 2013, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[24]  Louis L. Scharf,et al.  Adaptive subspace detectors , 2001, IEEE Trans. Signal Process..

[25]  Stefania Matteoli,et al.  An Overview of Background Modeling for Detection of Targets and Anomalies in Hyperspectral Remotely Sensed Imagery , 2014, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[26]  Hongyan Zhang,et al.  Column-generation kernel nonlocal joint collaborative representation for hyperspectral image classification , 2014 .

[27]  Liangpei Zhang,et al.  A Nonlocal Weighted Joint Sparse Representation Classification Method for Hyperspectral Imagery , 2014, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[28]  Dimitris G. Manolakis,et al.  Detection algorithms for hyperspectral imaging applications , 2002, IEEE Signal Process. Mag..

[29]  M. Elad,et al.  $rm K$-SVD: An Algorithm for Designing Overcomplete Dictionaries for Sparse Representation , 2006, IEEE Transactions on Signal Processing.

[30]  Stephen P. Boyd,et al.  An Interior-Point Method for Large-Scale $\ell_1$-Regularized Least Squares , 2007, IEEE Journal of Selected Topics in Signal Processing.

[31]  D. Donoho,et al.  Sparse MRI: The application of compressed sensing for rapid MR imaging , 2007, Magnetic resonance in medicine.

[32]  Jessica A. Faust,et al.  Imaging Spectroscopy and the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) , 1998 .

[33]  Joel A. Tropp,et al.  ALGORITHMS FOR SIMULTANEOUS SPARSE APPROXIMATION , 2006 .

[34]  E. Candès The restricted isometry property and its implications for compressed sensing , 2008 .

[35]  Guangming Shi,et al.  Nonlocal Image Restoration With Bilateral Variance Estimation: A Low-Rank Approach , 2013, IEEE Transactions on Image Processing.

[36]  Thomas S. Huang,et al.  Image Super-Resolution Via Sparse Representation , 2010, IEEE Transactions on Image Processing.

[37]  E. Candès,et al.  Stable signal recovery from incomplete and inaccurate measurements , 2005, math/0503066.

[38]  Lorenzo Bruzzone,et al.  Kernel-based methods for hyperspectral image classification , 2005, IEEE Transactions on Geoscience and Remote Sensing.

[39]  Michael Elad,et al.  Image Denoising Via Sparse and Redundant Representations Over Learned Dictionaries , 2006, IEEE Transactions on Image Processing.

[40]  Xiaoli Yu,et al.  Adaptive multiple-band CFAR detection of an optical pattern with unknown spectral distribution , 1990, IEEE Trans. Acoust. Speech Signal Process..

[41]  José M. F. Moura,et al.  Efficient detection in hyperspectral imagery , 2001, IEEE Trans. Image Process..

[42]  Stéphane Mallat,et al.  A Wavelet Tour of Signal Processing - The Sparse Way, 3rd Edition , 2008 .

[43]  R. Tibshirani,et al.  Regression shrinkage and selection via the lasso: a retrospective , 2011 .

[44]  Liangpei Zhang,et al.  Hyperspectral Image Restoration Using Low-Rank Matrix Recovery , 2014, IEEE Transactions on Geoscience and Remote Sensing.

[45]  G. Shaw,et al.  Signal processing for hyperspectral image exploitation , 2002, IEEE Signal Process. Mag..

[46]  S. Mallat A wavelet tour of signal processing , 1998 .

[47]  Joel A. Tropp,et al.  Greed is good: algorithmic results for sparse approximation , 2004, IEEE Transactions on Information Theory.

[48]  Chein-I Chang,et al.  Orthogonal subspace projection (OSP) revisited: a comprehensive study and analysis , 2005, IEEE Trans. Geosci. Remote. Sens..

[49]  Alan H. Strahler,et al.  The Moderate Resolution Imaging Spectroradiometer (MODIS): land remote sensing for global change research , 1998, IEEE Trans. Geosci. Remote. Sens..

[50]  Tiziana Veracini,et al.  Models and Methods for Automated Background Density Estimation in Hyperspectral Anomaly Detection , 2013, IEEE Transactions on Geoscience and Remote Sensing.

[51]  Heesung Kwon,et al.  Kernel RX-algorithm: a nonlinear anomaly detector for hyperspectral imagery , 2005, IEEE Transactions on Geoscience and Remote Sensing.

[52]  Rama Chellappa,et al.  Automatic target recognition based on simultaneous sparse representation , 2010, 2010 IEEE International Conference on Image Processing.