Novel technology to prepare oral formulations for preclinical safety studies.

A novel method to prepare oral formulations, normally suspended dosage form, for preclinical safety studies in animals has been developed using a rotation/revolution mixer. Small hard balls made of zirconia were added to the mixing process to evaluate effectiveness in making a high quality suspension. The driving with balls loaded in the cylindrical container (vessel) of the mixer was quite efficient in dispersing and milling the particles of the active pharmaceutical ingredient (API) in an aqueous medium. The API powder and a small amount of oral aqueous medium (vehicle) were successfully mixed by the spinning motion of the balls in the vessel as though the paste-like suspension was kneaded with a mortar and pestle. It was found that the milled suspension with the mean size of 10-20microm could be prepared, in addition finer milling of less than 10microm could be achieved by selecting the material of vessel. Optimum driving conditions including mixing time, size and quantity of balls, and the standard operational procedure was established using compounds varying in physicochemical properties. The particle size and quantitative analysis by HPLC showed that the resultant suspension was well-milled and highly homogeneous with the nearly intended concentration of API. The proposed method established by this experiment could be applied to the actual safety studies in the real preparation scale of oral suspension.

[1]  Beate Bittner,et al.  Intravenous administration of poorly soluble new drug entities in early drug discovery: the potential impact of formulation on pharmacokinetic parameters. , 2002, Current opinion in drug discovery & development.

[2]  M. Odomi,et al.  Effect of particle size reduction on dissolution and oral absorption of a poorly water-soluble drug, cilostazol, in beagle dogs. , 2006, Journal of controlled release : official journal of the Controlled Release Society.

[3]  Gloria Kwei,et al.  The role of biopharmaceutics in the development of a clinical nanoparticle formulation of MK-0869: a Beagle dog model predicts improved bioavailability and diminished food effect on absorption in human. , 2004, International journal of pharmaceutics.

[4]  Seshadri Neervannan,et al.  Preclinical formulations for discovery and toxicology: physicochemical challenges , 2006, Expert opinion on drug metabolism & toxicology.

[5]  R. Strickley Solubilizing Excipients in Oral and Injectable Formulations , 2004, Pharmaceutical Research.

[6]  C. Lipinski Drug-like properties and the causes of poor solubility and poor permeability. , 2000, Journal of pharmacological and toxicological methods.

[7]  M Bajpai,et al.  High-throughput screening for lead optimization: a rational approach. , 2000, Current opinion in drug discovery & development.

[8]  J. M. Shaw,et al.  Formulation and Antitumor Activity Evaluation of Nanocrystalline Suspensions of Poorly Soluble Anticancer Drugs , 1996, Pharmaceutical Research.

[9]  C. Tuleu,et al.  Physical and microbiological stability of an extemporaneous tacrolimus suspension for paediatric use , 2006, Journal of clinical pharmacy and therapeutics.

[10]  Brian Samas,et al.  An intravenous formulation decision tree for discovery compound formulation development. , 2003, International journal of pharmaceutics.

[11]  Elaine Merisko-Liversidge,et al.  Nanosizing: a formulation approach for poorly-water-soluble compounds. , 2003, European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences.