Medical Applications of Ultrawideband Radar

Over the last two decades a broad range of science, engineering, and related disciplines have used the penetration properties of electromagnetic waves to probe optically nontransparent material media. In recent years, the progress in electromagnetic sciences along with the revolution in microelectronics and computers brought significant sophistication in material-penetrating radar imagery. Many such advances use ultrawideband (UWB) radar technologies that gain in spatial resolution and depth of penetration into CONTENTS

[1]  A. A. Boryssenko Impulse radar emergency system to prevent damage due to harmful objects in vegetation , 2000, Record of the IEEE 2000 International Radar Conference [Cat. No. 00CH37037].

[2]  P. Routh,et al.  An Inverse Scattering Framework For Direct Multi-parameter Geo-radar Inversion , 2008 .

[3]  L.P. Ligthart,et al.  UWB Array-Based Sensor for Near-Field Imaging , 2007, IEEE Transactions on Microwave Theory and Techniques.

[4]  Marc A. Ressler,et al.  Unexploded ordnance detection experiments using ultrawideband synthetic aperture radar , 1998, Defense, Security, and Sensing.

[5]  D. Smith,et al.  Microwave Holographic Imaging of Breast Cancer , 2007, 2007 International Symposium on Microwave, Antenna, Propagation and EMC Technologies for Wireless Communications.

[6]  M. Le Goff,et al.  Algorithms and experimental results in ultra-wideband SAR imaging , 1997 .

[7]  Glenn S. Smith Directive properties of antennas for transmission into a material half-space , 1984 .

[8]  E. M. Staderini,et al.  UWB radars in medicine , 2002 .

[9]  Ibrahim Tekin,et al.  High resolution ultrawideband wall penetrating radar , 2007 .

[10]  James D. Taylor American and European Regulations on Ultrawideband Systems , 2017 .

[11]  Alexander Ya. Pasmurov,et al.  Radar Imaging and Holography , 2005 .

[12]  Carlos E. Romero,et al.  Ultra-wideband radar methods and techniques of medical sensing and imaging , 2005, SPIE Optics East.

[13]  C. Furse,et al.  Analysis of spread spectrum time domain reflectometry for wire fault location , 2005, IEEE Sensors Journal.

[14]  Tah-Hsiung Chu,et al.  An effective usage of vector network analyzer for microwave imaging , 2005 .

[15]  J. Richards The Use of Multiple-Polarization Data in Foliage Penetrating (FOPEN) Synthetic Aperture Radar (SAR) Applications , 2002 .

[16]  B. Levitas,et al.  UWB radar high resolution ISAR imaging , 2004, 2004 Second International Workshop Ultrawideband and Ultrashort Impulse Signals (IEEE Cat. No.04EX925).

[17]  C. Craeye,et al.  Ultra-Wide Band Near-Field Imaging System , 2007, 2007 IEEE Radar Conference.

[18]  A. Lishchenko,et al.  Inspection of internal structure of walls by subsurface radar , 2000, International Conference on Ground Penetrating Radar.

[19]  A. P. Annan Chapter 1 – Electromagnetic Principles of Ground Penetrating Radar , 2009 .

[20]  James Taylor,et al.  The Micropower Impulse Radar , 2000 .

[21]  Lin Ma,et al.  Two-Step Imaging Method and Resolution Analysis for UWB Through Wall Imaging , 2008, 2008 4th International Conference on Wireless Communications, Networking and Mobile Computing.

[22]  James D. Taylor Ultra-wideband Radar Technology , 2000 .

[23]  R.S. Thoma,et al.  UWB short-range radar sensing - The architecture of a baseband, pseudo-noise UWB radar sensor , 2007, IEEE Instrumentation & Measurement Magazine.

[24]  Jon F. Claerbout,et al.  Fundamentals of Geophysical Data Processing: With Applications to Petroleum Prospecting , 1985 .

[25]  P.M. van den Berg,et al.  Microwave-tomographic imaging of the high dielectric-contrast objects using different image-reconstruction approaches , 2005, IEEE Transactions on Microwave Theory and Techniques.

[26]  Wilhelm Burger,et al.  Digital Image Processing - An Algorithmic Introduction using Java , 2016, Texts in Computer Science.

[27]  J. Daniels,et al.  Modeling near-field GPR in three dimensions using the FDTD method , 1997 .

[28]  C. Gabriel Compilation of the Dielectric Properties of Body Tissues at RF and Microwave Frequencies. , 1996 .

[29]  F. Ahmad,et al.  A wideband, synthetic aperture beamformer for through-the-wall imaging , 2003, IEEE International Symposium on Phased Array Systems and Technology, 2003..

[30]  Paul M. Meaney,et al.  Enhancing breast tumor detection with near-field imaging , 2002 .

[31]  Allan R. Hunt,et al.  A wideband imaging radar for through-the-wall surveillance , 2004, SPIE Defense + Commercial Sensing.

[32]  R. Sullivan Microwave Radar Imaging And Advanced Concepts , 2000 .

[33]  Motoyuki Sato,et al.  Pre-stack migration applied to GPR for landmine detection , 2004 .

[34]  A. Taflove,et al.  Two-dimensional FDTD analysis of a pulsed microwave confocal system for breast cancer detection: fixed-focus and antenna-array sensors , 1998, IEEE Transactions on Biomedical Engineering.

[35]  James D. Taylor,et al.  Introduction to Ultrawideband Radar Applications and Design , 2017 .

[36]  Paul M. Meaney,et al.  Alternative Breast Imaging , 2005 .

[37]  Elen Boryssenko,et al.  Portable Imaging UWB Radar System With Two-Element Receiving Array , 2007 .

[38]  D.S. Garmatyuk,et al.  Simulated Imaging Performance of UWB SAR Based on OFDM , 2006, 2006 IEEE International Conference on Ultra-Wideband.

[39]  Lam H. Nguyen,et al.  Ultrawideband (UWB) Radar Imaging of Building Interior: Measurements and Predictions , 2009, IEEE Transactions on Geoscience and Remote Sensing.

[40]  R. W. Lau,et al.  The dielectric properties of biological tissues: III. Parametric models for the dielectric spectrum of tissues. , 1996, Physics in medicine and biology.

[41]  Teh-Ho Tao,et al.  UWB radar for patient monitoring , 2008, IEEE Aerospace and Electronic Systems Magazine.