Coherent mid-infrared supercontinuum generation in all-solid chalcogenide microstructured fibers with all-normal dispersion

We report the coherent mid-infrared supercontinuum generation in an all-solid chalcogenide microstructured fiber with all-normal dispersion. The chalcogenide microstructured fiber is four-hole structure with core material of AsSe2 and air holes are replaced by As2S5 glass rods. Coherent mid-infrared supercontinuum light is generated in a 2-cm-long chalcogenide microstructured fiber pumped by a 2.7 μm laser. The simulated and experimental results have a good match and the coherence property of supercontinuum light in the chalcogenide microstructured fiber has been studied by using the complex degree of coherence theory. Coherent mid-infrared supercontinuum generation is extended to 3.3 μm in this work.

[1]  Stéphane Coen,et al.  Fundamental limits to few-cycle pulse generation from compression of supercontinuum spectra generated in photonic crystal fiber. , 2004, Optics express.

[2]  M. Andrés,et al.  Supercontinuum generation at 800 nm in all-normal dispersion photonic crystal fiber. , 2014, Optics express.

[3]  R. Windeler,et al.  Fundamental noise limitations to supercontinuum generation in microstructure fiber. , 2002, Physical review letters.

[4]  Younès Messaddeq,et al.  Two octaves mid-infrared supercontinuum generation in As₂Se₃ microwires. , 2014, Optics express.

[5]  Jens Limpert,et al.  High quality sub-two cycle pulses from compression of supercontinuum generated in all-normal dispersion photonic crystal fiber. , 2011, Optics express.

[6]  Benjamin J Eggleton,et al.  Low-threshold supercontinuum generation in highly nonlinear chalcogenide nanowires. , 2008, Optics letters.

[7]  Periklis Petropoulos,et al.  Solid microstructured optical fiber. , 2003, Optics express.

[8]  Jari Turunen,et al.  Complete characterization of supercontinuum coherence , 2011 .

[9]  John M Dudley,et al.  Coherence properties of supercontinuum spectra generated in photonic crystal and tapered optical fibers. , 2002, Optics letters.

[10]  Michael H Frosz,et al.  Validation of input-noise model for simulations of supercontinuum generation and rogue waves. , 2010, Optics express.

[11]  K. Vodopyanov,et al.  Solid-state mid-infrared laser sources , 2003 .

[12]  Mietek Lisak,et al.  Wave breaking in nonlinear-optical fibers , 1992 .

[14]  Alexander M. Heidt,et al.  Pulse preserving flat-top supercontinuum generation in all-normal dispersion photonic crystal fibers , 2010 .

[15]  Alexander Hartung,et al.  Coherent octave spanning near-infrared and visible supercontinuum generation in all-normal dispersion photonic crystal fibers. , 2011, Optics express.

[16]  L. Mandel,et al.  Optical Coherence and Quantum Optics , 1995 .

[17]  W. Wadsworth,et al.  Coherent supercontinuum generation in photonic crystal fiber with all-normal group velocity dispersion. , 2011, Optics express.

[18]  J. Dudley,et al.  Supercontinuum generation in photonic crystal fiber , 2006 .

[19]  Dariusz Pysz,et al.  Coherent supercontinuum generation up to 2.3 µm in all-solid soft-glass photonic crystal fibers with flat all-normal dispersion. , 2014, Optics express.

[20]  R. Stolen,et al.  Optical wave breaking of pulses in nonlinear optical fibers. , 1985, Optics letters.

[21]  A. Fercher,et al.  Submicrometer axial resolution optical coherence tomography. , 2002, Optics letters.

[22]  J. Thøgersen,et al.  Coherent anti-Stokes Raman scattering microscopy with a photonic crystal fiber based light source , 2003, Conference on Lasers and Electro-Optics, 2003. CLEO '03..

[23]  Chinlon Lin,et al.  Flat supercontinuum generation in a dispersion-flattened nonlinear photonic crystal fiber with normal dispersion , 2006, 2006 Optical Fiber Communication Conference and the National Fiber Optic Engineers Conference.

[24]  Jasbinder S. Sanghera,et al.  Large Raman gain and nonlinear phase shifts in high-purity As 2 Se 3 chalcogenide fibers , 2004 .

[25]  Yi Yu,et al.  1.8-10  μm mid-infrared supercontinuum generated in a step-index chalcogenide fiber using low peak pump power. , 2015, Optics letters.

[26]  E. Wolf,et al.  Principles of Optics (7th Ed) , 1999 .

[27]  Mischa Bonn,et al.  Quantitative CARS spectroscopy using the maximum entropy method: the main lipid phase transition. , 2007, Chemphyschem : a European journal of chemical physics and physical chemistry.

[28]  Younes Messaddeq,et al.  Broadband supercontinuum generation in all-normal dispersion chalcogenide microwires , 2015 .

[29]  Trevor M. Benson,et al.  Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre , 2014, Nature Photonics.

[30]  T. Hänsch,et al.  Optical frequency metrology , 2002, Nature.

[31]  Vladimir Shiryaev,et al.  Trends and prospects for development of chalcogenide fibers for mid-infrared transmission , 2013 .

[32]  Jasbinder S. Sanghera,et al.  Chalcogenide Glass-Fiber-Based Mid-IR Sources and Applications , 2009 .

[33]  J. R. Taylor,et al.  Supercontinuum Generation in Optical Fibers: Preface , 2010 .

[34]  Norihiko Nishizawa,et al.  Octave spanning high-quality supercontinuum generation in all-fiber system , 2007 .

[35]  Tonglei Cheng,et al.  Mid-infrared supercontinuum generation in an AsSe2-As2S5 hybrid microstructured optical fiber , 2014, 2014 5th International Conference on Optical Communication Systems (OPTICS).

[36]  Zhaoming Zhu,et al.  Full-vectorial finite-difference analysis of microstructured optical fibers. , 2002, Optics express.