Using approximations to scale exploratory data analysis in datacubes
暂无分享,去创建一个
[1] R. Singleton. A Method for Minimizing the Sum of Absolute Values of Deviations , 1940 .
[2] J. Tukey. Data analysis, computation and mathematics , 1972 .
[3] Manuel Blum,et al. Time Bounds for Selection , 1973, J. Comput. Syst. Sci..
[4] Alfred V. Aho,et al. The Design and Analysis of Computer Algorithms , 1974 .
[5] J. Gentle. Least absolute values estimation: an introduction , 1977 .
[6] F. Mosteller,et al. Understanding robust and exploratory data analysis , 1985 .
[7] Michael Stuart,et al. Understanding Robust and Exploratory Data Analysis , 1984 .
[8] Frederick Mosteller,et al. Exploring Data Tables, Trends and Shapes. , 1986 .
[9] M. Braga,et al. Exploratory Data Analysis , 2018, Encyclopedia of Social Network Analysis and Mining. 2nd Ed..
[10] F. Mosteller,et al. Exploring Data Tables, Trends and Shapes. , 1988 .
[11] Anil K. Jain,et al. Algorithms for Clustering Data , 1988 .
[12] Peter J. Haas,et al. The New Jersey Data Reduction Report , 1997 .
[13] Kenneth A. Ross,et al. Fast Computation of Sparse Datacubes , 1997, VLDB.
[14] Mark Sullivan,et al. Quasi-cubes: exploiting approximations in multidimensional databases , 1997, SGMD.
[15] Dimitrios Gunopulos,et al. Automatic subspace clustering of high dimensional data for data mining applications , 1998, SIGMOD '98.
[16] Nimrod Megiddo,et al. Discovery-Driven Exploration of OLAP Data Cubes , 1998, EDBT.
[17] Daniel Barbará,et al. Quasi-Cubes: A Space-E cient Way to Support Approximate Multidimensional Databases , 1998 .
[18] H. Hurst. XLVIII. Reducing observations by the method of minimum deviations , 1930 .