A fair rule in minimum cost spanning tree problems

We study minimum cost spanning tree problems and define a cost sharing rule that satisfies many more properties than other rules in the literature. Furthermore, we provide an axiomatic characterization based on monotonicity properties.

[1]  Juan José Vidal Puga,et al.  Realizing fair outcomes in minimum cost spanning tree problems through non-cooperative mechanisms , 2007 .

[2]  Michael Maschler,et al.  Spanning network games , 1998, Int. J. Game Theory.

[3]  Additivity in cost spanning tree problems , 2005 .

[4]  Daniel Granot,et al.  On the core and nucleolus of minimum cost spanning tree games , 1984, Math. Program..

[5]  Henk Norde,et al.  The P-Value for Cost Sharing in Minimum Cost Spanning Tree Situations , 2003 .

[6]  C. G. Bird,et al.  On cost allocation for a spanning tree: A game theoretic approach , 1976, Networks.

[7]  Anirban Kar,et al.  Axiomatization of the Shapley Value on Minimum Cost Spanning Tree Games , 2002, Games Econ. Behav..

[8]  R. Prim Shortest connection networks and some generalizations , 1957 .

[9]  Vincent Feltkamp,et al.  On the irreducible core and the equal remaining obligations rule of minimum cost spanning extension problems , 1994 .

[10]  Gustavo Bergantiños,et al.  A non-cooperative approach to the cost spanning tree problem , 2004, Math. Methods Oper. Res..

[11]  Anirban Kar,et al.  Cost monotonicity, consistency and minimum cost spanning tree games , 2004, Games Econ. Behav..

[12]  Theo S. H. Driessen,et al.  The irreducible Core of a minimum cost spanning tree game , 1993, ZOR Methods Model. Oper. Res..

[13]  G. Bergantiños,et al.  On the Shapley value of a minimum cost spanning tree problem , 2005 .

[14]  H. Young Monotonic solutions of cooperative games , 1985 .

[15]  J. Kruskal On the shortest spanning subtree of a graph and the traveling salesman problem , 1956 .

[16]  L. S. Shapley,et al.  17. A Value for n-Person Games , 1953 .

[17]  Gustavo Bergantiños,et al.  The optimistic TU game in minimum cost spanning tree problems , 2007, Int. J. Game Theory.

[18]  Philip Wolfe,et al.  Contributions to the theory of games , 1953 .

[19]  Daniel Granot,et al.  Minimum cost spanning tree games , 1981, Math. Program..

[20]  Nimrod Megiddo,et al.  Computational Complexity of the Game Theory Approach to Cost Allocation for a Tree , 1978, Math. Oper. Res..