Presence of water at elevated temperatures, structural transition, and thermal expansion behavior in LaPO4:Eu

[1]  M. Gupta,et al.  Phonons and Anomalous Thermal Expansion Behaviour in Crystalline Solids , 2017, 1711.07267.

[2]  G. A. Blab,et al.  Probing the Influence of Disorder on Lanthanide Luminescence Using Eu-Doped LaPO4 Nanoparticles , 2017, The journal of physical chemistry. C, Nanomaterials and interfaces.

[3]  S. Mishra,et al.  Neutron Diffraction Reveals the Existence of Confined Water in Triangular and Hexagonal Channels of Modified YPO4 at Elevated Temperatures , 2017, 1705.06540.

[4]  R. Maier,et al.  Ecosystem Composition Controls the Fate of Rare Earth Elements during Incipient Soil Genesis , 2017, Scientific Reports.

[5]  L. Peters,et al.  High-pressure phase of LaPO 4 studied by x-ray diffraction and second harmonic generation , 2016 .

[6]  C. Bridges,et al.  In Situ X-ray and Neutron Diffraction of the Rare-Earth Phosphate Proton Conductors Sr/Ca-Doped LaPO4 at Elevated Temperatures , 2016 .

[7]  Chao Zhang,et al.  Lanthanide Nanoparticles: From Design toward Bioimaging and Therapy. , 2015, Chemical reviews.

[8]  J. Rouquette,et al.  Mechanism of H2O insertion and chemical bond formation in AlPO(4)-54·xH2O at high pressure. , 2015, Journal of the American Chemical Society.

[9]  R. Ningthoujam Finding confined water in the hexagonal phase of Bi0.05Eu0.05Y0.90PO4·xH2O and its impact for identifying the location of luminescence quencher , 2013 .

[10]  Q. Meng,et al.  Sensitization of Eu3+ Luminescence in Eu:YPO4 Nanocrystals , 2013 .

[11]  R. Mahiou,et al.  Emission properties of Sm3+/Bi3+-doped YPO4 phosphors , 2013 .

[12]  M. Ocaña,et al.  Microwave-Assisted Synthesis and Luminescence of Mesoporous RE-Doped YPO4 (RE = Eu, Ce, Tb, and Ce + Tb) Nanophosphors with Lenticular Shape , 2012 .

[13]  R. Ningthoujam,et al.  Solvent effect in monoclinic to hexagonal phase transformation in LaPO4:RE (RE=Dy3+, Sm3+) nanoparticles: Photoluminescence study , 2011 .

[14]  S. K. Srivastava,et al.  Disappearance and recovery of luminescence in Bi3+, Eu3+ codoped YPO4 nanoparticles due to the presence of water molecules up to 800 °C. , 2011, Journal of the American Chemical Society.

[15]  Jagannath,et al.  Effects of Ce3+ codoping and annealing on phase transformation and luminescence of Eu3+-doped YPO4 nanorods: D2O solvent effect. , 2010, Journal of the American Chemical Society.

[16]  A. K. Tyagi,et al.  Gd2O3:Eu3+ particles prepared by glycine-nitrate combustion: Phase, concentration, annealing, and luminescence studies , 2009 .

[17]  T. Hansen,et al.  The D20 instrument at the ILL: a versatile high-intensity two-axis neutron diffractometer , 2008 .

[18]  A. K. Tyagi,et al.  SnO2: Eu3+ nanoparticles dispersed in TiO2 matrix: Improved energy transfer between semiconductor host and Eu3+ ions for the low temperature synthesized samples , 2007 .

[19]  Janet B. Davis,et al.  Machinable Ceramics Containing Rare‐Earth Phosphates , 2005 .

[20]  Masatoshi Mizuno,et al.  Thermal, Mechanical, and Chemical Properties of Sintered Xenotime-Type RPO4 (R = Y, Er, Yb, or Lu) , 2005 .

[21]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[22]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[23]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[24]  Juan Rodríguez-Carvajal,et al.  Recent advances in magnetic structure determination by neutron powder diffraction , 1993 .

[25]  H. Monkhorst,et al.  SPECIAL POINTS FOR BRILLOUIN-ZONE INTEGRATIONS , 1976 .

[26]  R. Mooney X-ray diffraction study of cerous phosphate and related crystals. I. Hexagonal modification , 1950 .

[27]  E. Grüneisen,et al.  Untersuchungen an Metallkristallen. III , 1924 .

[28]  D. Holtstam,et al.  Crystal chemistry of REEXO4 compounds (X = P, As, V). II. Review of REEXO4 compounds and their stability fields , 2004 .