Beyond Genetic Engineering: Technical Capabilities in the Application Fields of Biocatalysis and Biosensors

[1]  J. Schmidt,et al.  Synthetic Biology as Late-Modern Technology , 2015 .

[2]  Gerd Klöck,et al.  Synthetic Biology: The Next Step Forward for Industrial Biotechnology , 2015 .

[3]  Sahreena S. Lakhundi,et al.  Synthetic Biology for Biomass Conversion , 2013 .

[4]  Nanette R Boyle,et al.  Engineering improved ethanol production in Escherichia coli with a genome-wide approach. , 2013, Metabolic engineering.

[5]  Paul S. Freemont,et al.  Validation of an entirely in vitro approach for rapid prototyping of DNA regulatory elements for synthetic biology , 2013, Nucleic acids research.

[6]  Michaela A. Teravest,et al.  Tuning promoter strengths for improved synthesis and function of electron conduits in Escherichia coli. , 2013, ACS synthetic biology.

[7]  Sophie Weiss,et al.  Genome-scale identification and characterization of ethanol tolerance genes in Escherichia coli. , 2013, Metabolic engineering.

[8]  D. K. Barnard Design and construction of modular genetic devices and the enzymatic hydrolysis of lignocellulosic biomass , 2012 .

[9]  Baojun Wang,et al.  Customizing cell signaling using engineered genetic logic circuits. , 2012, Trends in microbiology.

[10]  Jane Calvert,et al.  A Synthetic Biology Roadmap for the UK , 2012 .

[11]  S. Lakhundi Synthetic biology approach to cellulose degradation , 2012 .

[12]  Christine Nicole S. Santos,et al.  An Engineered Microbial Platform for Direct Biofuel Production from Brown Macroalgae , 2012, Science.

[13]  Sung Kuk Lee,et al.  Engineered Escherichia coli capable of co-utilization of cellobiose and xylose. , 2012, Enzyme and microbial technology.

[14]  Ee-Been Goh,et al.  Engineering of Bacterial Methyl Ketone Synthesis for Biofuels , 2012, Applied and Environmental Microbiology.

[15]  Helena Nevalainen,et al.  Trichoderma reesei RUT-C30--thirty years of strain improvement. , 2012, Microbiology.

[16]  Hiroaki Suzuki,et al.  Deglycosylation of cellulosomal enzyme enhances cellulosome assembly in Saccharomyces cerevisiae. , 2012, Journal of biotechnology.

[17]  J. Bao,et al.  Cloning of Thermostable Cellulase Genes of Clostridium thermocellum and Their Secretive Expression in Bacillus subtilis , 2012, Applied Biochemistry and Biotechnology.

[18]  L. Lynd,et al.  Enhanced Microbial Utilization of Recalcitrant Cellulose by an Ex Vivo Cellulosome-Microbe Complex , 2011, Applied and Environmental Microbiology.

[19]  Blake A. Simmons,et al.  Synthesis of three advanced biofuels from ionic liquid-pretreated switchgrass using engineered Escherichia coli , 2011, Proceedings of the National Academy of Sciences.

[20]  Eui-Sung Choi,et al.  Metabolic engineering of Escherichia coli for α-farnesene production. , 2011, Metabolic engineering.

[21]  Jay D. Keasling,et al.  Identification and microbial production of a terpene-based advanced biofuel , 2011, Nature communications.

[22]  Joel S. Bader,et al.  Synthetic chromosome arms function in yeast and generate phenotypic diversity by design , 2011, Nature.

[23]  Nikos Kyrpides,et al.  Engineering Escherichia coli for Biodiesel Production Utilizing a Bacterial Fatty Acid Methyltransferase , 2011, Applied and Environmental Microbiology.

[24]  W. V. van Zyl,et al.  High level secretion of cellobiohydrolases by Saccharomyces cerevisiae , 2011, Biotechnology for biofuels.

[25]  A. Mackenzie,et al.  Cleavage of cellulose by a CBM33 protein , 2011, Protein science : a publication of the Protein Society.

[26]  James M Clomburg,et al.  Engineered reversal of the β-oxidation cycle for the synthesis of fuels and chemicals , 2011, Nature.

[27]  Feng Xu,et al.  Oxidoreductive Cellulose Depolymerization by the Enzymes Cellobiose Dehydrogenase and Glycoside Hydrolase 61 , 2011, Applied and Environmental Microbiology.

[28]  Kwang Myung Cho,et al.  Extending carbon chain length of 1-butanol pathway for 1-hexanol synthesis from glucose by engineered Escherichia coli. , 2011, Journal of the American Chemical Society.

[29]  Xiao‐Zhou Zhang,et al.  One-step production of lactate from cellulose as the sole carbon source without any other organic nutrient by recombinant cellulolytic Bacillus subtilis. , 2011, Metabolic engineering.

[30]  G. Shi,et al.  Development of an industrial ethanol-producing yeast strain for efficient utilization of cellobiose. , 2011, Enzyme and microbial technology.

[31]  G. R. Malmirchegini,et al.  Assembly of Minicellulosomes on the Surface of Bacillus subtilis , 2011, Applied and Environmental Microbiology.

[32]  Xuefeng Lu,et al.  De novo Biosynthesis of Biodiesel by Escherichia coli in Optimized Fed-Batch Cultivation , 2011, PloS one.

[33]  J. Keasling,et al.  Engineering microbial biofuel tolerance and export using efflux pumps , 2011, Molecular systems biology.

[34]  Xiaoqiang Jia,et al.  Engineering Bacillus subtilis for isobutanol production by heterologous Ehrlich pathway construction and the biosynthetic 2-ketoisovalerate precursor pathway overexpression , 2011, Applied Microbiology and Biotechnology.

[35]  Muhammad Nazmul Karim,et al.  A whole cell biocatalyst for cellulosic ethanol production from dilute acid-pretreated corn stover hydrolyzates , 2011, Applied Microbiology and Biotechnology.

[36]  Natalia N. Ivanova,et al.  The Complete Genome Sequence of Fibrobacter succinogenes S85 Reveals a Cellulolytic and Metabolic Specialist , 2011, PloS one.

[37]  P. Visca,et al.  A multitask biosensor for micro-volumetric detection of N-3-oxo-dodecanoyl-homoserine lactone quorum sensing signal. , 2011, Biosensors & bioelectronics.

[38]  A. Kondo,et al.  Direct ethanol production from cellulosic materials using a diploid strain of Saccharomyces cerevisiae with optimized cellulase expression , 2011, Biotechnology for biofuels.

[39]  Alistair Elfick,et al.  A pH-based biosensor for detection of arsenic in drinking water , 2011, Analytical and bioanalytical chemistry.

[40]  J. Liao,et al.  Driving Forces Enable High-Titer Anaerobic 1-Butanol Synthesis in Escherichia coli , 2011, Applied and Environmental Microbiology.

[41]  J. Liao,et al.  High-flux isobutanol production using engineered Escherichia coli: a bioreactor study with in situ product removal , 2011, Applied Microbiology and Biotechnology.

[42]  S. Rose,et al.  Co-expression of a cellobiose phosphorylase and lactose permease enables intracellular cellobiose utilisation by Saccharomyces cerevisiae , 2011, Applied Microbiology and Biotechnology.

[43]  A. Kondo,et al.  Direct ethanol production from cassava pulp using a surface-engineered yeast strain co-displaying two amylases, two cellulases, and β-glucosidase , 2011, Applied Microbiology and Biotechnology.

[44]  Harald Kolmar,et al.  Decorating microbes: surface display of proteins on Escherichia coli. , 2011, Trends in biotechnology.

[45]  J. Ajioka,et al.  SYNTHETIC BIOLOGY AND THE ART OF BIOSENSOR DESIGN , 2011 .

[46]  J. Liao,et al.  Improvement of isopropanol production by metabolically engineered Escherichia coli using gas stripping. , 2010, Journal of bioscience and bioengineering.

[47]  V. Rubio,et al.  The mechanism of signal transduction by two-component systems. , 2010, Current opinion in structural biology.

[48]  Hee-Kyoung Ryu,et al.  Production of isoprenoids in Saccharomyces cerevisiae , 2010 .

[49]  Jay D Keasling,et al.  Farnesol production from Escherichia coli by harnessing the exogenous mevalonate pathway , 2010, Biotechnology and bioengineering.

[50]  Xiao‐Zhou Zhang,et al.  One‐step production of biocommodities from lignocellulosic biomass by recombinant cellulolytic Bacillus subtilis: Opportunities and challenges , 2010 .

[51]  S. Belkin,et al.  Where microbiology meets microengineering: design and applications of reporter bacteria , 2010, Nature Reviews Microbiology.

[52]  Sylvia Daunert,et al.  Integration of spore-based genetically engineered whole-cell sensing systems into portable centrifugal microfluidic platforms , 2010, Analytical and bioanalytical chemistry.

[53]  Harry J. Gilbert,et al.  Cellulosomes: highly efficient nanomachines designed to deconstruct plant cell wall complex carbohydrates. , 2010, Annual review of biochemistry.

[54]  Akihiko Kondo,et al.  Cocktail δ-integration: a novel method to construct cellulolytic enzyme expression ratio-optimized yeast strains , 2010, Microbial cell factories.

[55]  W. H. Zyl,et al.  Heterologous co-production of Thermobifida fusca Cel9A with other cellulases in Saccharomyces cerevisiae , 2010, Applied Microbiology and Biotechnology.

[56]  M. Sedlák,et al.  Establishment of l-arabinose fermentation in glucose/xylose co-fermenting recombinant Saccharomyces cerevisiae 424A(LNH-ST) by genetic engineering , 2010, Applied Microbiology and Biotechnology.

[57]  G. Church,et al.  A functional metagenomic approach for expanding the synthetic biology toolbox for biomass conversion , 2010, Molecular systems biology.

[58]  J. Saddler,et al.  Access to cellulose limits the efficiency of enzymatic hydrolysis: the role of amorphogenesis , 2010, Biotechnology for biofuels.

[59]  Kristiina Hildén,et al.  Lignin‐modifying enzymes in filamentous basidiomycetes – ecological, functional and phylogenetic review , 2010, Journal of basic microbiology.

[60]  J. Keasling,et al.  Genes Involved in Long-Chain Alkene Biosynthesis in Micrococcus luteus , 2009, Applied and Environmental Microbiology.

[61]  Huimin Zhao,et al.  Yeast Surface Display of Trifunctional Minicellulosomes for Simultaneous Saccharification and Fermentation of Cellulose to Ethanol , 2009, Applied and Environmental Microbiology.

[62]  Byeoung-Soo Park,et al.  Cellulosic alcoholic fermentation using recombinant Saccharomyces cerevisiae engineered for the production of Clostridium cellulovorans endoglucanase and Saccharomycopsis fibuligera beta-glucosidase. , 2009, FEMS microbiology letters.

[63]  Shen-Long Tsai,et al.  Functional Assembly of Minicellulosomes on the Saccharomyces cerevisiae Cell Surface for Cellulose Hydrolysis and Ethanol Production , 2009, Applied and Environmental Microbiology.

[64]  B. Hahn-Hägerdal,et al.  Arabinose and xylose fermentation by recombinant Saccharomyces cerevisiae expressing a fungal pentose utilization pathway , 2009, Microbial cell factories.

[65]  Y. Ni,et al.  Extracellular recombinant protein production from Escherichia coli , 2009, Biotechnology Letters.

[66]  D. Wilson Evidence for a novel mechanism of microbial cellulose degradation , 2009 .

[67]  C. French Synthetic biology and biomass conversion: a match made in heaven? , 2009, Journal of The Royal Society Interface.

[68]  M. Schreiber,et al.  Development of bacteria-based bioassays for arsenic detection in natural waters , 2009, Analytical and bioanalytical chemistry.

[69]  Bruce E. Dale,et al.  Cellulosic ethanol production from AFEX-treated corn stover using Saccharomyces cerevisiae 424A(LNH-ST) , 2009, Proceedings of the National Academy of Sciences.

[70]  J. Pronk,et al.  Novel Evolutionary Engineering Approach for Accelerated Utilization of Glucose, Xylose, and Arabinose Mixtures by Engineered Saccharomyces cerevisiae Strains , 2008, Applied and Environmental Microbiology.

[71]  Alyssa M. Redding,et al.  Metabolic engineering of Saccharomyces cerevisiae for the production of n-butanol , 2008, Microbial cell factories.

[72]  Koichi Inoue,et al.  Novel Carotenoid-Based Biosensor for Simple Visual Detection of Arsenite: Characterization and Preliminary Evaluation for Environmental Application , 2008, Applied and Environmental Microbiology.

[73]  M. Okochi,et al.  Overexpression of prefoldin from the hyperthermophilic archaeum Pyrococcus horikoshii OT3 endowed Escherichia coli with organic solvent tolerance , 2008, Applied Microbiology and Biotechnology.

[74]  M. Nielen,et al.  A new highly androgen specific yeast biosensor, enabling optimisation of (Q)SAR model approaches , 2008, The Journal of Steroid Biochemistry and Molecular Biology.

[75]  Hauke Harms,et al.  Internal arsenite bioassay calibration using multiple bioreporter cell lines , 2007, Microbial biotechnology.

[76]  Mutations that alter the regulation of the chb operon of Escherichia coli allow utilization of cellobiose , 2007, Molecular microbiology.

[77]  Sylvia Daunert,et al.  Construction of spores for portable bacterial whole-cell biosensing systems. , 2007, Analytical chemistry.

[78]  Andrew J. Millar,et al.  Development of a novel biosensor for the detection of arsenic in drinking water , 2007 .

[79]  F. Bolivar,et al.  Metabolic Engineering of Bacillus subtilis for Ethanol Production: Lactate Dehydrogenase Plays a Key Role in Fermentative Metabolism , 2007, Applied and Environmental Microbiology.

[80]  P. Richardson,et al.  Genome Sequence of the Cellulolytic Gliding Bacterium Cytophaga hutchinsonii , 2007, Applied and Environmental Microbiology.

[81]  Bärbel Hahn-Hägerdal,et al.  Comparison of the xylose reductase-xylitol dehydrogenase and the xylose isomerase pathways for xylose fermentation by recombinant Saccharomyces cerevisiae , 2007, Microbial cell factories.

[82]  K. Shanmugam,et al.  Construction of an Escherichia coli K-12 Mutant for Homoethanologenic Fermentation of Glucose or Xylose without Foreign Genes , 2007, Applied and Environmental Microbiology.

[83]  Lee R Lynd,et al.  Hydrolysis and fermentation of amorphous cellulose by recombinant Saccharomyces cerevisiae. , 2007, Metabolic engineering.

[84]  Teodoro Espinosa-Solares,et al.  Macroscopic mass and energy balance of a pilot plant anaerobic bioreactor operated under thermophilic conditions , 2006, Applied biochemistry and biotechnology.

[85]  E. Boles,et al.  Microbial Cell Factories Co-utilization of L-arabinose and D-xylose by Laboratory and Industrial Saccharomyces Cerevisiae Strains , 2022 .

[86]  Christopher A. Voigt,et al.  Synthetic biology: Engineering Escherichia coli to see light , 2005, Nature.

[87]  R. Weiss,et al.  Artificial cell-cell communication in yeast Saccharomyces cerevisiae using signaling elements from Arabidopsis thaliana , 2005, Nature Biotechnology.

[88]  A. Ivask,et al.  Lead and Cu in contaminated urban soils: extraction with chemical reagents and bioluminescent bacteria and yeast. , 2005, The Science of the total environment.

[89]  H. Honda,et al.  Discovery of glpC, an Organic Solvent Tolerance-Related Gene in Escherichia coli, Using Gene Expression Profiles from DNA Microarrays , 2005, Applied and Environmental Microbiology.

[90]  J. R. van der Meer,et al.  Illuminating the detection chain of bacterial bioreporters. , 2004, Environmental microbiology.

[91]  K. Baronian,et al.  The use of yeast and moulds as sensing elements in biosensors. , 2004, Biosensors & bioelectronics.

[92]  M. Ueda,et al.  Synergistic Saccharification, and Direct Fermentation to Ethanol, of Amorphous Cellulose by Use of an Engineered Yeast Strain Codisplaying Three Types of Cellulolytic Enzyme , 2004, Applied and Environmental Microbiology.

[93]  M. L. Simpson,et al.  Bioluminescent bioreporter integrated circuits: potentially small, rugged and inexpensive whole‐cell biosensors for remote environmental monitoring , 2004, Journal of applied microbiology.

[94]  L. Ingram,et al.  Simultaneous saccharification and fermentation of amorphous cellulose to ethanol by recombinant Klebsiella oxytoca SZ21 without supplemental cellulase , 2001, Biotechnology Letters.

[95]  M. Karp,et al.  One‐step measurement of firefly luciferase activity in yeast , 2003, Yeast.

[96]  Jan Roelof van der Meer,et al.  Development of a set of simple bacterial biosensors for quantitative and rapid measurements of arsenite and arsenate in potable water. , 2003, Environmental science & technology.

[97]  L. Looger,et al.  Computational design of receptor and sensor proteins with novel functions , 2003, Nature.

[98]  Thomas F. Knight,et al.  Idempotent Vector Design for Standard Assembly of Biobricks , 2003 .

[99]  I. S. Pretorius,et al.  Microbial Cellulose Utilization: Fundamentals and Biotechnology , 2002, Microbiology and Molecular Biology Reviews.

[100]  D. Stoll,et al.  Mapping of genes encoding glycoside hydrolases on the chromosome of Cellulomonas fimi. , 2001, Canadian journal of microbiology.

[101]  F. C. Davis,et al.  Gene Integration and Expression and Extracellular Secretion of Erwinia chrysanthemi Endoglucanase CelY (celY) and CelZ (celZ) in EthanologenicKlebsiella oxytoca P2 , 2001, Applied and Environmental Microbiology.

[102]  H. Melosh,et al.  Resistance of Bacillus Endospores to Extreme Terrestrial and Extraterrestrial Environments , 2000, Microbiology and Molecular Biology Reviews.

[103]  G. Barrett,et al.  Genetically engineered whole-cell sensing systems: coupling biological recognition with reporter genes. , 2000, Chemical reviews.

[104]  M. Elowitz,et al.  A synthetic oscillatory network of transcriptional regulators , 2000, Nature.

[105]  J. Collins,et al.  Construction of a genetic toggle switch in Escherichia coli , 2000, Nature.

[106]  A Martinez,et al.  Enteric Bacterial Catalysts for Fuel Ethanol Production , 1999, Biotechnology progress.

[107]  M Virta,et al.  Luminescent bacterial sensor for cadmium and lead. , 1998, Biosensors & bioelectronics.

[108]  R. Aono Improvement of organic solvent tolerance level of Escherichia coli by overexpression of stress-responsive genes. , 1998, Extremophiles : life under extreme conditions.

[109]  N. Ho,et al.  Genetically Engineered SaccharomycesYeast Capable of Effective Cofermentation of Glucose and Xylose , 1998, Applied and Environmental Microbiology.

[110]  E. Papoutsakis,et al.  Expression of Clostridium acetobutylicumATCC 824 Genes in Escherichia coli for Acetone Production and Acetate Detoxification , 1998, Applied and Environmental Microbiology.

[111]  M. Nakano,et al.  Anaerobic growth of a "strict aerobe" (Bacillus subtilis). , 1998, Annual review of microbiology.

[112]  M Virta,et al.  Recombinant luminescent bacteria for measuring bioavailable arsenite and antimonite , 1997, Applied and environmental microbiology.

[113]  G L Hazelbauer,et al.  Transmembrane signalling by a hybrid protein: communication from the domain of chemoreceptor Trg that recognizes sugar-binding proteins to the kinase/phosphatase domain of osmosensor EnvZ , 1994, Journal of bacteriology.

[114]  B. O’Malley,et al.  Expression of functional chicken oviduct progesterone receptors in yeast (Saccharomyces cerevisiae). , 1989, The Journal of biological chemistry.