Multiparty Quantum Secret Report

A multiparty quantum secret report scheme is proposed with quantum encryption. The boss Alice and her M agents first share a sequence of (M+1)-particle Greenberger?Horne?Zeilinger (GHZ) states that only Alice knows which state each (M+1)-particle quantum system is in. Each agent exploits a controlled-not (CNot) gate to encrypt the travelling particle by using the particle in the GHZ state as the control qubit. The boss Alice decrypts the travelling particle with a CNot gate after performing a ?x operation on her particle in the GHZ state or not. After the GHZ states (the quantum key) are used up, the parties check whether there is a vicious eavesdropper, say Eve, monitoring the quantum line, by picking out some samples from the GHZ states shared and measuring them with two measuring bases. After confirming the security of the quantum key, they use the remaining GHZ states repeatedly for the next round of quantum communication. This scheme has the advantage of high intrinsic efficiency for the qubits and total efficiency.

[1]  Gao Ting,et al.  A Simultaneous Quantum Secure Direct Communication Scheme between the Central Party and Other M Parties , 2005 .

[2]  Yong-Sheng Zhang,et al.  Quantum key distribution via quantum encryption , 2000, quant-ph/0011034.

[3]  Antoni Wójcik Eavesdropping on the "ping-pong" quantum communication protocol. , 2003, Physical review letters.

[4]  Ping Zhou,et al.  Efficient symmetric multiparty quantum state sharing of an arbitrary m-qubit state , 2005, quant-ph/0511223.

[5]  Fuguo Deng,et al.  Bidirectional quantum secret sharing and secret splitting with polarized single photons , 2005, quant-ph/0504119.

[6]  Zhan-jun Zhang,et al.  Multiparty quantum secret sharing , 2004, quant-ph/0412203.

[7]  Lo,et al.  Unconditional security of quantum key distribution over arbitrarily long distances , 1999, Science.

[8]  Gilles Brassard,et al.  Quantum Cryptography , 2005, Encyclopedia of Cryptography and Security.

[9]  M. Koashi,et al.  Quantum entanglement for secret sharing and secret splitting , 1999 .

[10]  K. Boström,et al.  Deterministic secure direct communication using entanglement. , 2002, Physical review letters.

[11]  Qing-yu Cai,et al.  Improving the capacity of the Boström-Felbinger protocol , 2003, quant-ph/0311168.

[12]  Harald Weinfurter,et al.  Secure Communication with a Publicly Known Key , 2001 .

[13]  Charles H. Bennett,et al.  Quantum cryptography without Bell's theorem. , 1992, Physical review letters.

[14]  Fuguo Deng,et al.  Reply to ``Comment on `Secure direct communication with a quantum one-time-pad' '' , 2004, quant-ph/0405177.

[15]  Jian-Wei Pan,et al.  Efficient multiparty quantum-secret-sharing schemes , 2004, quant-ph/0405179.

[16]  Hong-Yu Zhou,et al.  An efficient quantum secret sharing scheme with Einstein–Podolsky–Rosen pairs , 2005 .

[17]  V. Buzek,et al.  Quantum secret sharing , 1998, quant-ph/9806063.

[18]  M. Lukin,et al.  Storage of light in atomic vapor. , 2000, Physical Review Letters.

[19]  Xin Ji,et al.  Three-party quantum secure direct communication based on GHZ states , 2006, quant-ph/0601125.

[20]  Shor,et al.  Simple proof of security of the BB84 quantum key distribution protocol , 2000, Physical review letters.

[21]  I. Chuang,et al.  Quantum Computation and Quantum Information: Bibliography , 2010 .

[22]  Fuguo Deng,et al.  Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block , 2003, quant-ph/0308173.

[23]  Kaoru Shimizu,et al.  Communication channels secured from eavesdropping via transmission of photonic Bell states , 1999 .

[24]  Wang Yan,et al.  Secure Quantum Key Distribution Network with Bell States and Local Unitary Operations , 2005 .

[25]  Charles H. Bennett,et al.  Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states. , 1992, Physical review letters.

[26]  A Cabello Quantum key distribution in the Holevo limit. , 2000, Physical review letters.

[27]  Cao Hai-Jing,et al.  Quantum Secure Direct Communication with W State , 2006 .

[28]  Ekert,et al.  Quantum cryptography based on Bell's theorem. , 1991, Physical review letters.

[29]  K. Peng,et al.  Multiparty secret sharing of quantum information based on entanglement swapping , 2004 .

[30]  Shou Zhang,et al.  Secure direct communication based on secret transmitting order of particles , 2006, quant-ph/0601119.

[31]  Fuguo Deng,et al.  Symmetric multiparty-controlled teleportation of an arbitrary two-particle entanglement , 2005, quant-ph/0501129.

[32]  Ting Gao,et al.  Addendum to "Quantum secret sharing between multiparty and multiparty without entanglement" , 2005 .

[33]  Zhi-Xi Wang,et al.  Deterministic secure direct communication using GHZ states and swapping quantum entanglement , 2004, quant-ph/0406082.

[34]  Fuguo Deng,et al.  Multiparty quantum-state sharing of an arbitrary two-particle state with Einstein-Podolsky-Rosen pairs (4 pages) , 2005, quant-ph/0504158.

[35]  Zhou Ping,et al.  Quantum Secure Direct Communication Network with Two-Step Protocol , 2006 .

[36]  Cai Qing-yu,et al.  Deterministic secure communication without using entanglement , 2004 .

[37]  G. Long,et al.  Theoretically efficient high-capacity quantum-key-distribution scheme , 2000, quant-ph/0012056.

[38]  Fuguo Deng,et al.  Quantum secure direct communication with high-dimension quantum superdense coding , 2005 .

[39]  Guang-Can Guo,et al.  Quantum secret sharing without entanglement , 2002 .

[40]  Kaoru Shimizu,et al.  Single-photon-interference communication equivalent to Bell-state-basis cryptographic quantum communication , 2000 .

[41]  Zhang Zhan-jun,et al.  Deterministic secure direct communication by using swapping quantum entanglement and local unitary operations , 2005 .

[42]  Fuguo Deng,et al.  Bidirectional quantum key distribution protocol with practical faint laser pulses , 2004 .

[43]  C. P. Sun,et al.  Quasi-spin-wave quantum memories with a dynamical symmetry. , 2003, Physical review letters.

[44]  F. L. Yan,et al.  A scheme for secure direct communication using EPR pairs and teleportation , 2004 .

[45]  G. Long,et al.  Controlled order rearrangement encryption for quantum key distribution , 2003, quant-ph/0308172.