A Design-Adaptive Local Polynomial Estimator for the Errors-in-Variables Problem

Local polynomial estimators are popular techniques for nonparametric regression estimation and have received great attention in the literature. Their simplest version, the local constant estimator, can be easily extended to the errors-in-variables context by exploiting its similarity with the deconvolution kernel density estimator. The generalization of the higher order versions of the estimator, however, is not straightforward and has remained an open problem for the last 15 years. We propose an innovative local polynomial estimator of any order in the errors-in-variables context, derive its design-adaptive asymptotic properties and study its finite sample performance on simulated examples. We provide not only a solution to a long-standing open problem, but also provide methodological contributions to error-in-variable regression, including local polynomial estimation of derivative functions.

[1]  ON LOCAL LINEAR ESTIMATION IN NONPARAMETRIC ERRORS-IN-VARIABLES MODELS , 2007 .

[2]  Aurore Delaigle,et al.  An alternative view of the deconvolution problem , 2008 .

[3]  Wayne A. Fuller,et al.  Measurement Error Models , 1988 .

[4]  Felix Schlenk,et al.  Proof of Theorem 3 , 2005 .

[5]  Ayman Baklizi,et al.  Nonparametric estimation of P(X , 2006 .

[6]  J. R. Cook,et al.  Simulation-Extrapolation Estimation in Parametric Measurement Error Models , 1994 .

[7]  Jianqinc,et al.  Multivariate Regression Estimation with Errors-in-Variables : Asymptotic Normality for Mixing Processes * , 2003 .

[8]  Jianqing Fan,et al.  Local polynomial estimation of regression functions for mixing processes , 1994, Proceedings of 1994 Workshop on Information Theory and Statistics.

[9]  J. Koo,et al.  B-spline estimation of regression functions with errors in variable , 1998 .

[10]  David Ruppert,et al.  Local polynomial regression and simulation–extrapolation , 2004 .

[11]  Tong Li,et al.  Nonparametric Estimation of the Measurement Error Model Using Multiple Indicators , 1998 .

[12]  Jianqing Fan On the Optimal Rates of Convergence for Nonparametric Deconvolution Problems , 1991 .

[13]  Alexander Meister,et al.  Nonparametric Regression Estimation in the Heteroscedastic Errors-in-Variables Problem , 2007 .

[14]  Alexander Meister,et al.  A ridge-parameter approach to deconvolution , 2007, 0710.3491.

[15]  Hua Liang,et al.  Partially linear single-index measurement error models , 2005 .

[16]  Jianqing Fan,et al.  Nonparametric regression with errors in variables , 1993 .

[17]  Marie-Luce Taupin,et al.  Nonparametric Estimation of the Regression Function in an Errors-in-Variables Model , 2005 .

[18]  J. R. Cook,et al.  Simulation-Extrapolation: The Measurement Error Jackknife , 1995 .

[19]  Susanne M. Schennach,et al.  Estimation of Nonlinear Models with Measurement Error , 2004 .

[20]  Alexander Meister,et al.  DENSITY ESTIMATION WITH NORMAL MEASUREMENT ERROR WITH UNKNOWN VARIANCE , 2006 .

[21]  Jianqing Fan ASYMPTOTIC NORMALITY FOR DECONVOLVING KERNEL DENSITY ESTIMATORS , 1989 .

[22]  D. Ruppert,et al.  Density Estimation in the Presence of Heteroscedastic Measurement Error , 2008 .

[23]  Alexander Meister,et al.  Density estimation with heteroscedastic error , 2008, 0805.2216.

[24]  Jianqing Fan,et al.  Adaptively Local One-Dimensional Subproblems with Application to a Deconvolution Problem , 1993 .

[25]  Susanne M. Schennach,et al.  NONPARAMETRIC REGRESSION IN THE PRESENCE OF MEASUREMENT ERROR , 2004, Econometric Theory.

[26]  Peter J. Diggle,et al.  A Fourier Approach to Nonparametric Deconvolution of a Density Estimate , 1993 .

[27]  H. Müller,et al.  Local Polynomial Modeling and Its Applications , 1998 .

[28]  M. Wand,et al.  EXACT MEAN INTEGRATED SQUARED ERROR , 1992 .

[29]  Vincent N. LaRiccia,et al.  Local Polynomial Estimators , 2009 .

[30]  Jianqing Fan,et al.  Multivariate regression estimation with errors-in-variables: asymptotic normality for mixing processes , 1992 .

[31]  D. Ruppert,et al.  Measurement Error in Nonlinear Models , 1995 .

[32]  Scott M. Berry,et al.  Bayesian Smoothing and Regression Splines for Measurement Error Problems , 2002 .

[33]  László Györfi,et al.  Nonparametric Regression Estimation , 2002 .

[34]  Susanne M. Schennach,et al.  Instrumental Variable Treatment of Nonclassical Measurement Error Models , 2008 .

[35]  Alexander Meister,et al.  On the effect of misspecifying the error density in a deconvolution problem , 2004 .

[36]  Michael H. Neumann,et al.  On the effect of estimating the error density in nonparametric deconvolution , 1997 .

[37]  Marie-Luce Taupin,et al.  Semi-Parametric Estimation in the Nonlinear Structural Errors-in-Variables Model , 2001 .

[38]  Y. Chen [The change of serum alpha 1-antitrypsin level in patients with spontaneous pneumothorax]. , 1995, Zhonghua jie he he hu xi za zhi = Zhonghua jiehe he huxi zazhi = Chinese journal of tuberculosis and respiratory diseases.

[39]  Aurore Delaigle,et al.  On optimal kernel choice for deconvolution , 2006 .

[40]  Raymond J. Carroll,et al.  Low order approximations in deconvolution and regression with errors in variables , 2004 .

[41]  Alexander Meister,et al.  On deconvolution with repeated measurements , 2008 .

[42]  W. Härdle,et al.  Large sample theory in a semiparametric partially linear errors-in-variables models , 1997 .

[43]  R. Carroll,et al.  Deconvolving kernel density estimators , 1987 .

[44]  D. Ioannides,et al.  Nonparametric regression with errors in variables and applications , 1997 .

[45]  P. Hall,et al.  Optimal Rates of Convergence for Deconvolving a Density , 1988 .

[46]  D. Ruppert,et al.  Nonparametric regression in the presence of measurement error , 1999 .

[47]  Catherine Matias,et al.  Minimax estimation of the noise level and of the deconvolution density in a semiparametric convolution model , 2005 .

[48]  E. Masry Local Polynomial Estimation of Regression Functions for Mixing Processes , 1997 .

[49]  Jianqing Fan,et al.  Global Behavior of Deconvolution Kernel Estimates , 1989 .

[50]  S. Zwanzig On local linear estimation in nonparametric errors-in-variables models , 2007 .

[51]  Aurore Delaigle,et al.  Using SIMEX for Smoothing-Parameter Choice in Errors-in-Variables Problems , 2008 .